26,940 research outputs found

    Magnetic Z(N) symmetry in 2+1 dimensions

    Get PDF
    This review describes the role of magnetic symmetry in 2+1 dimensional gauge theories. In confining theories without matter fields in fundamental representation the magnetic symmetry is spontaneously broken. Under some mild assumptions, the low-energy dynamics is determined universally by this spontaneous breaking phenomenon. The degrees of freedom in the effective theory are magnetic vortices. Their role in confining dynamics is similar to that played by pions and sigma in the chiral symmetry breaking dynamics. I give an explicit derivation of the effective theory in (2+1)-dimensional weakly coupled confining models and argue that it remains qualitatively the same in strongly coupled (2+1)-dimensional gluodynamics. Confinement in this effective theory is a very simple classical statement about the long range interaction between topological solitons, which follows (as a result of a simple direct classical calculation) from the structure of the effective Lagrangian. I show that if fundamentally charged dynamical fields are present the magnetic symmetry becomes local rather than global. The modifications to the effective low energy description in the case of heavy dynamical fundamental matter are discussed. This effective lagrangian naturally yields a bag like description of baryonic excitations. I also discuss the fate of the magnetic symmetry in gauge theories with the Chern-Simons term

    High magnetic field theory for the local density of states in graphene with smooth arbitrary potential landscapes

    Full text link
    We study theoretically the energy and spatially resolved local density of states (LDoS) in graphene at high perpendicular magnetic field. For this purpose, we extend from the Schr\"odinger to the Dirac case a semicoherent-state Green's-function formalism, devised to obtain in a quantitative way the lifting of the Landau-level degeneracy in the presence of smooth confinement and smooth disordered potentials. Our general technique, which rigorously describes quantum-mechanical motion in a magnetic field beyond the semi-classical guiding center picture of vanishing magnetic length (both for the ordinary two-dimensional electron gas and graphene), is connected to the deformation (Weyl) quantization theory in phase space developed in mathematical physics. For generic quadratic potentials of either scalar (i.e., electrostatic) or mass (i.e., associated with coupling to the substrate) types, we exactly solve the regime of large magnetic field (yet at finite magnetic length - formally, this amounts to considering an infinite Fermi velocity) where Landau-level mixing becomes negligible. Hence, we obtain a closed-form expression for the graphene Green's function in this regime, providing analytically the discrete energy spectra for both cases of scalar and mass parabolic confinement. Furthermore, the coherent-state representation is shown to display a hierarchy of local energy scales ordered by powers of the magnetic length and successive spatial derivatives of the local potential, which allows one to devise controlled approximation schemes at finite temperature for arbitrary and possibly disordered potential landscapes. As an application, we derive general analytical non-perturbative expressions for the LDoS, which may serve as a good starting point for interpreting experimental studies.Comment: 27 pages, 2 figures ; v2: typos corrected, corresponds to published versio

    Spectral Properties and Local Density of States of Disordered Quantum Hall Systems with Rashba Spin-Orbit Coupling

    Full text link
    We theoretically investigate the spectral properties and the spatial dependence of the local density of states (LDoS) in disordered two-dimensional electron gases (2DEG) in the quantum Hall regime, taking into account the combined presence of electrostatic disorder, random Rashba spin-orbit in- teraction, and finite Zeeman coupling. To this purpose, we extend a coherent-state Green's function formalism previously proposed for spinless 2DEG in the presence of smooth arbitrary disorder, that here incorporates the nontrivial coupling between the orbital and spin degrees of freedom into the electronic drift states. The formalism allows us to obtain analytical and controlled nonperturbative expressions of the energy spectrum in arbitrary locally flat disorder potentials with both random electric fields and Rashba coupling. As an illustration of this theory, we derive analytical microscopic expressions for the LDoS in different temperature regimes which can be used as a starting point to interpret scanning tunneling spectroscopy data at high magnetic fields. In this context, we study the spatial dependence and linewidth of the LDoS peaks and explain an experimentally-noticed correlation between the spatial dispersion of the spin-orbit splitting and the local extrema of the potential landscape.Comment: 18 pages, 5 figures; typos corrected and Sec. IV A rewritten; published versio

    Vortices in a Bose-Einstein condensate confined by an optical lattice

    Get PDF
    We investigate the dynamics of vortices in repulsive Bose-Einstein condensates in the presence of an optical lattice (OL) and a parabolic magnetic trap. The dynamics is sensitive to the phase of the OL potential relative to the magnetic trap, and depends less on the OL strength. For the cosinusoidal OL potential, a local minimum is generated at the trap's center, creating a stable equilibrium for the vortex, while in the case of the sinusoidal potential, the vortex is expelled from the center, demonstrating spiral motion. Cases where the vortex is created far from the trap's center are also studied, revealing slow outward-spiraling drift. Numerical results are explained in an analytical form by means of a variational approximation. Finally, motivated by a discrete model (which is tantamount to the case of the strong OL lattice), we present a novel type of vortex consisting of two pairs of anti-phase solitons.Comment: 10 pages, 6 figure

    Thermal vortex dynamics in thin circular ferromagnetic nanodisks

    Get PDF
    The dynamics of gyrotropic vortex motion in a thin circular nanodisk of soft ferromagnetic material is considered. The demagnetization field is calculated using two-dimensional Green's functions for the thin film problem and fast Fourier transforms. At zero temperature, the dynamics of the Landau-Lifshitz-Gilbert equation is simulated using fourth order Runge-Kutta integration. Pure vortex initial conditions at a desired position are obtained with a Lagrange multipliers constraint. These methods give accurate estimates of the vortex restoring force constant kFk_F and gyrotropic frequency, showing that the vortex core motion is described by the Thiele equation to very high precision. At finite temperature, the second order Heun algorithm is applied to the Langevin dynamical equation with thermal noise and damping. A spontaneous gyrotropic motion takes place without the application of an external magnetic field, driven only by thermal fluctuations. The statistics of the vortex radial position and rotational velocity are described with Boltzmann distributions determined by kFk_F and by a vortex gyrotropic mass mG=G2/kFm_G=G^2/k_F, respectively, where GG is the vortex gyrovector.Comment: 18 pages, 17 figure

    Dynamics of Non-Abelian Vortices

    Full text link
    The scattering is studied using moduli space metric for well-separated vortices of non-Abelian vortices in (2+1)-dimensional U(N) gauge theories with N Higgs fields in the fundamental representation. Unlike vortices in the Abelian-Higgs model, dynamics of non-Abelian vortices has a lot of new features; The kinetic energy in real space can be transfered to that of internal orientational moduli and vice versa, the energy and charge transfer between two vortices, the scattering angle of collisions with a fixed impact parameter depends on the internal orientations, and some resonances appear due to synchronization of the orientations. Scattering of dyonic non-Abelian vortices in a mass deformed theory is also studied. We find a bound state of two vortices moving along coils around a circle, like a loop of a phone code.Comment: 45 pages, 13 figure

    Surface Roughness Dominated Pinning Mechanism of Magnetic Vortices in Soft Ferromagnetic Films

    Full text link
    Although pinning of domain walls in ferromagnets is ubiquitous, the absence of an appropriate characterization tool has limited the ability to correlate the physical and magnetic microstructures of ferromagnetic films with specific pinning mechanisms. Here, we show that the pinning of a magnetic vortex, the simplest possible domain structure in soft ferromagnets, is strongly correlated with surface roughness, and we make a quantitative comparison of the pinning energy and spatial range in films of various thickness. The results demonstrate that thickness fluctuations on the lateral length scale of the vortex core diameter, i.e. an effective roughness at a specific length scale, provides the dominant pinning mechanism. We argue that this mechanism will be important in virtually any soft ferromagnetic film.Comment: 4 figure
    • …
    corecore