4,278 research outputs found

    Business Case and Technology Analysis for 5G Low Latency Applications

    Get PDF
    A large number of new consumer and industrial applications are likely to change the classic operator's business models and provide a wide range of new markets to enter. This article analyses the most relevant 5G use cases that require ultra-low latency, from both technical and business perspectives. Low latency services pose challenging requirements to the network, and to fulfill them operators need to invest in costly changes in their network. In this sense, it is not clear whether such investments are going to be amortized with these new business models. In light of this, specific applications and requirements are described and the potential market benefits for operators are analysed. Conclusions show that operators have clear opportunities to add value and position themselves strongly with the increasing number of services to be provided by 5G.Comment: 18 pages, 5 figure

    Towards Tactile Internet in Beyond 5G Era: Recent Advances, Current Issues and Future Directions

    Get PDF
    Tactile Internet (TI) is envisioned to create a paradigm shift from the content-oriented communications to steer/control-based communications by enabling real-time transmission of haptic information (i.e., touch, actuation, motion, vibration, surface texture) over Internet in addition to the conventional audiovisual and data traffics. This emerging TI technology, also considered as the next evolution phase of Internet of Things (IoT), is expected to create numerous opportunities for technology markets in a wide variety of applications ranging from teleoperation systems and Augmented/Virtual Reality (AR/VR) to automotive safety and eHealthcare towards addressing the complex problems of human society. However, the realization of TI over wireless media in the upcoming Fifth Generation (5G) and beyond networks creates various non-conventional communication challenges and stringent requirements in terms of ultra-low latency, ultra-high reliability, high data-rate connectivity, resource allocation, multiple access and quality-latency-rate tradeoff. To this end, this paper aims to provide a holistic view on wireless TI along with a thorough review of the existing state-of-the-art, to identify and analyze the involved technical issues, to highlight potential solutions and to propose future research directions. First, starting with the vision of TI and recent advances and a review of related survey/overview articles, we present a generalized framework for wireless TI in the Beyond 5G Era including a TI architecture, the main technical requirements, the key application areas and potential enabling technologies. Subsequently, we provide a comprehensive review of the existing TI works by broadly categorizing them into three main paradigms; namely, haptic communications, wireless AR/VR, and autonomous, intelligent and cooperative mobility systems. Next, potential enabling technologies across physical/Medium Access Control (MAC) and network layers are identified and discussed in detail. Also, security and privacy issues of TI applications are discussed along with some promising enablers. Finally, we present some open research challenges and recommend promising future research directions

    Weaving Lighthouses and Stitching Stories: Blind and Visually Impaired People Designing E-textiles

    Get PDF
    We describe our experience of working with blind and visually impaired people to create interactive art objects that are personal to them, through a participatory making process using electronic textiles (e-textiles) and hands-on crafting techniques. The research addresses both the practical considerations about how to structure hands-on making workshops in a way which is accessible to participants of varying experience and abilities, and how effective the approach was in enabling participants to tell their own stories and feel in control of the design and making process. The results of our analysis is the offering of insights in how to run e-textile making sessions in such a way for them to be more accessible and inclusive to a wider community of participants

    Enabling collaboration in virtual reality navigators

    Get PDF
    In this paper we characterize a feature superset for Collaborative Virtual Reality Environments (CVRE), and derive a component framework to transform stand-alone VR navigators into full-fledged multithreaded collaborative environments. The contributions of our approach rely on a cost-effective and extensible technique for loading software components into separate POSIX threads for rendering, user interaction and network communications, and adding a top layer for managing session collaboration. The framework recasts a VR navigator under a distributed peer-to-peer topology for scene and object sharing, using callback hooks for broadcasting remote events and multicamera perspective sharing with avatar interaction. We validate the framework by applying it to our own ALICE VR Navigator. Experimental results show that our approach has good performance in the collaborative inspection of complex models.Postprint (published version

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    An aesthetics of touch: investigating the language of design relating to form

    Get PDF
    How well can designers communicate qualities of touch? This paper presents evidence that they have some capability to do so, much of which appears to have been learned, but at present make limited use of such language. Interviews with graduate designer-makers suggest that they are aware of and value the importance of touch and materiality in their work, but lack a vocabulary to fully relate to their detailed explanations of other aspects such as their intent or selection of materials. We believe that more attention should be paid to the verbal dialogue that happens in the design process, particularly as other researchers show that even making-based learning also has a strong verbal element to it. However, verbal language alone does not appear to be adequate for a comprehensive language of touch. Graduate designers-makers’ descriptive practices combined non-verbal manipulation within verbal accounts. We thus argue that haptic vocabularies do not simply describe material qualities, but rather are situated competences that physically demonstrate the presence of haptic qualities. Such competencies are more important than groups of verbal vocabularies in isolation. Design support for developing and extending haptic competences must take this wide range of considerations into account to comprehensively improve designers’ capabilities

    Passive Control Architectures for Collaborative Virtual Haptic Interaction and Bilateral Teleoperation over Unreliable Packet-Switched Digital Network

    Get PDF
    This PhD dissertation consists of two major parts: collaborative haptic interaction (CHI) and bilateral teleoperation over the Internet. For the CHI, we propose a novel hybrid peer-to-peer (P2P) architecture including the shared virtual environment (SVE) simulation, coupling between the haptic device and VE, and P2P synchronization control among all VE copies. This framework guarantees the interaction stability for all users with general unreliable packet-switched communication network which is the most challenging problem for CHI control framework design. This is achieved by enforcing our novel \emph{passivity condition} which fully considers time-varying non-uniform communication delays, random packet loss/swapping/duplication for each communication channel. The topology optimization method based on graph algebraic connectivity is also developed to achieve optimal performance under the communication bandwidth limitation. For validation, we implement a four-user collaborative haptic system with simulated unreliable packet-switched network connections. Both the hybrid P2P architecture design and the performance improvement due to the topology optimization are verified. In the second part, two novel hybrid passive bilateral teleoperation control architectures are proposed to address the challenging stability and performance issues caused by the general Internet communication unreliability (e.g. varying time delay, packet loss, data duplication, etc.). The first method--Direct PD Coupling (DPDC)--is an extension of traditional PD control to the hybrid teleoperation system. With the assumption that the Internet communication unreliability is upper bounded, the passive gain setting condition is derived and guarantees the interaction stability for the teleoperation system which interacts with unknown/unmodeled passive human and environment. However, the performance of DPDC degrades drastically when communication unreliability is severe because its feasible gain region is limited by the device viscous damping. The second method--Virtual Proxy Based PD Coupling (VPDC)--is proposed to improve the performance while providing the same interaction stability. Experimental and quantitative comparisons between DPDC and VPDC are conducted, and both interaction stability and performance difference are validated
    • 

    corecore