477,417 research outputs found

    Computability of simple games: A characterization and application to the core

    Get PDF
    The class of algorithmically computable simple games (i) includes the class of games that have finite carriers and (ii) is included in the class of games that have finite winning coalitions. This paper characterizes computable games, strengthens the earlier result that computable games violate anonymity, and gives examples showing that the above inclusions are strict. It also extends Nakamura's theorem about the nonemptyness of the core and shows that computable games have a finite Nakamura number, implying that the number of alternatives that the players can deal with rationally is restricted.Comment: 35 pages; To appear in Journal of Mathematical Economics; Appendix added, Propositions, Remarks, etc. are renumbere

    A Bloch wave numerical scheme for scattering problems in periodic wave-guides

    Get PDF
    We present a new numerical scheme to solve the Helmholtz equation in a wave-guide. We consider a medium that is bounded in the x2x_2-direction, unbounded in the x1x_1-direction and ε\varepsilon-periodic for large ∣x1∣|x_1|, allowing different media on the left and on the right. We suggest a new numerical method that is based on a truncation of the domain and the use of Bloch wave ansatz functions in radiation boxes. We prove the existence and a stability estimate for the infinite dimensional version of the proposed problem. The scheme is tested on several interfaces of homogeneous and periodic media and it is used to investigate the effect of negative refraction at the interface of a photonic crystal with a positive effective refractive index.Comment: 25 pages, 10 figure

    On the completeness of quantum computation models

    Full text link
    The notion of computability is stable (i.e. independent of the choice of an indexing) over infinite-dimensional vector spaces provided they have a finite "tensorial dimension". Such vector spaces with a finite tensorial dimension permit to define an absolute notion of completeness for quantum computation models and give a precise meaning to the Church-Turing thesis in the framework of quantum theory. (Extra keywords: quantum programming languages, denotational semantics, universality.)Comment: 15 pages, LaTe

    Computation with Advice

    Get PDF
    Computation with advice is suggested as generalization of both computation with discrete advice and Type-2 Nondeterminism. Several embodiments of the generic concept are discussed, and the close connection to Weihrauch reducibility is pointed out. As a novel concept, computability with random advice is studied; which corresponds to correct solutions being guessable with positive probability. In the framework of computation with advice, it is possible to define computational complexity for certain concepts of hypercomputation. Finally, some examples are given which illuminate the interplay of uniform and non-uniform techniques in order to investigate both computability with advice and the Weihrauch lattice

    Elimination of the linearization error and improved basis-set convergence within the FLAPW method

    Full text link
    We analyze in detail the error that arises from the linearization in linearized augmented-plane-wave (LAPW) basis functions around predetermined energies ElE_l and show that it can lead to undesirable dependences of the calculated results on method-inherent parameters such as energy parameters ElE_l and muffin-tin sphere radii. To overcome these dependences, we evaluate approaches that eliminate the linearization error systematically by adding local orbitals (LOs) to the basis set. We consider two kinds of LOs: (i) constructed from solutions ul(r,E)u_l(r,E) to the scalar-relativistic approximation of the radial Dirac equation with E>ElE>E_l and (ii) constructed from second energy derivatives ∂2ul(r,E)/∂E2\partial^2 u_l(r,E) / \partial E^2 at E=ElE=E_l. We find that the latter eliminates the error most efficiently and yields the density functional answer to many electronic and materials properties with very high precision. Finally, we demonstrate that the so constructed LAPW+LO basis shows a more favorable convergence behavior than the conventional LAPW basis due to a better decoupling of muffin-tin and interstitial regions, similarly to the related APW+lo approach, which requires an extra set of LOs to reach the same total energy, though.Comment: 12 pages, 15 figure
    • …
    corecore