9,236 research outputs found
????????? ??????-?????? ???????????? ?????? ?????? ????????? ?????????
Department of Energy Engineering (Battery Science and Technology)Aprotic electrolyte based lithium-oxygen batteries are of considerable interest due to its ultrahigh theoretical specific energy density (1675 mAh per gram of oxygen) against the present lithium-ion battery. In spite of the attractiveness of its high theoretical capacity, there is a number of drawbacks such as instability of electrochemical reaction of electrode and electrolytes. In order to overcome these parasitic reactions, significant efforts have been devoted to developing the key materials such as carbon-free air cathodes and high concentrated electrolytes. However, the CO2 evolution during the charging process and low ionic conductivity limit the ideal electrochemical reaction in aprotic electrolytes.
In this thesis, we applied the molten electrolyte based on nitrate-based electrolyte (Li/Na/K/Cs/Ca-NO3). The molten electrolyte, which has a eutectic point of 65???, has the advantages of high stability and high-temperature operation, thereby preventing detrimental solvent byproducts in lithium-oxygen batteries. We examined the Oxygen Evolution Reaction (OER) and Oxygen Reduction Reaction (ORR) on operating temperature using in situ pressure drop and gas analyses, Differential Electrochemical Mass Spectrometry (DEMS). Our results demonstrated that the Li2O2, a discharge product, formed a stable hexagonal morphology in the lithium-oxygen battery upon discharge process by scanning electron microscopy and X-ray diffraction techniques. Also, it leads to improved oxygen mobility at high temperature since a molten salt was used as the electrolyte in lithium-oxygen batteries. In addition, we found that kinetics are improved with increasing operating temperature in molten salt electrolyte cells.ope
The Joint Center for Energy Storage Research: A New Paradigm for Battery Research and Development
The Joint Center for Energy Storage Research (JCESR) seeks transformational
change in transportation and the electricity grid driven by next generation
high performance, low cost electricity storage. To pursue this transformative
vision JCESR introduces a new paradigm for battery research: integrating
discovery science, battery design, research prototyping and manufacturing
collaboration in a single highly interactive organization. This new paradigm
will accelerate the pace of discovery and innovation and reduce the time from
conceptualization to commercialization. JCESR applies its new paradigm
exclusively to beyond-lithium-ion batteries, a vast, rich and largely
unexplored frontier. This review presents JCESR's motivation, vision, mission,
intended outcomes or legacies and first year accomplishments.Comment: 17 pages, 14 figures, 96 reference
Electrochemical processes and systems: application for tutors
The features of redox reactions and the principles of their balancing according to the medium composition are considered. The basic representations about electrochemical processes and systems are outlined. The reactions and principles of chemical sources of electric energy and electrolysis systems functioning are analyzed. A general idea is given about the chemical properties of metals, corrosion resistance in environments of various aggressiveness, and the protection principles are given. Multivariate tasks and exercises for students, and PhD student’s classroom and independent work are offered. For teachers, PhD students and students of universities of specialties "Chemical technologies and engineering", "Biotechnologies and bioengineering", "Oil and gas engineering and technologies".Розглянуто особливості окисно-відновних реакцій і принципи їх балансування залежно від складу середовища. Викладено фундаментальні уявлення про електрохімічні процеси і системи. Проаналізовано перебіг реакцій і принципи функціонування хімічних джерел електричної енергії та систем електролізу. Узагальнено уявлення щодо хімічних властивостей металів, корозійної стійкості у
середовищах різної агресивності та наведено принципи організації захисту від руйнування. Запропоновано багатоваріантні завдання та вправи для аудиторної та самостійної роботи студентів і аспірантів. Розраховано на викладачів, аспірантів і студентів вищих навчальних закладів спеціальностей "Хімічні технології та інженерія”, "Біотехнології та біоінженерія", "Нафтогазова інженерія та
технології"
Electrochemical processes and systems: application for tutors
The features of redox reactions and the principles of their balancing according to the medium composition are considered. The basic representations about electrochemical processes and systems are outlined. The reactions and principles of chemical sources of electric energy and electrolysis systems functioning are analyzed. A general idea is given about the chemical properties of metals, corrosion resistance in environments of various aggressiveness, and the protection principles are given. Multivariate tasks and exercises for students, and PhD student’s classroom and independent work are offered. For teachers, PhD students and students of universities of specialties "Chemical technologies and engineering", "Biotechnologies and bioengineering", "Oil and gas engineering and technologies".Розглянуто особливості окисно-відновних реакцій і принципи їх балансування залежно від складу середовища. Викладено фундаментальні уявлення про електрохімічні процеси і системи. Проаналізовано перебіг реакцій і принципи функціонування хімічних джерел електричної енергії та систем електролізу. Узагальнено уявлення щодо хімічних властивостей металів, корозійної стійкості у
середовищах різної агресивності та наведено принципи організації захисту від руйнування. Запропоновано багатоваріантні завдання та вправи для аудиторної та самостійної роботи студентів і аспірантів. Розраховано на викладачів, аспірантів і студентів вищих навчальних закладів спеціальностей "Хімічні технології та інженерія”, "Біотехнології та біоінженерія", "Нафтогазова інженерія та
технології"
Paving the Way towards Highly Stable and Practical Electrolytes for Rechargeable Magnesium Batteries
Despite being considered a promising anode candidate for future battery technologies, the reactivity of Mg metal and its resultant passivation have challenged the development of electrolytes for rechargeable Mg batteries. In this Concept article, we shed light on critical past and current motivations, hurdles, and design strategies of electrolyte development for Mg batteries. Special focus is given to the most recent advancements; in particular, we elaborate on bottom‐up design strategies targeted to overcome the corrosion issue caused by current electrolyte systems. Salts containing the BH motif expanded the portfolio of Mg‐compatible electrolytes and are used as a platform to create a whole new promising family. Here, we explain the approach, challenges, and the path forward for ultimately creating Mg‐compatible, highly stable, and non‐corrosive Mg electrolytes.Enhancing electrolytes: A platform to design electrolytes for rechargeable Mg batteries based on the BH motif has generated a new family of highly promising and noncorrosive electrolytes. The principles that guided the design of state‐of‐the‐art Mg electrolytes and their properties are discussed. In addition, a bottom‐up design approach based on BH compounds is described.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/110620/1/celc_201402207_sm_miscellaneous_information.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/110620/2/51_ftp.pd
An overview of progress in electrolytes for secondary zinc-air batteries and other storage systems based on zinc
The revived interest and research on the development of novel energy storage systems with exceptional inherent
safety, environmentally benign and low cost for integration in large scale electricity grid and electric
vehicles is now driven by the global energy policies. Within various technical challenges yet to be resolved
and despite extensive studies, the low cycle life of the zinc anode is still hindering the implementation of
rechargeable zinc batteries at industrial scale. This review presents an extensive overview of electrolytes for
rechargeable zinc batteries in relation to the anode issues which are closely affected by the electrolyte nature.
Widely studied aqueous electrolytes, from alkaline to acidic pH, as well as non-aqueous systems including
polymeric and room temperature ionic liquids are reported. References from early rechargeable Zn-air research
to recent results on novel Zn hybrid systems have been analyzed. The ambition is to identify the challenges
of the electrolyte system and to compile the proposed improvements and solutions. Ultimately, all the
technologies based on zinc, including the more recently proposed novel zinc hybrid batteries combining the
strong points of lithium-ion, redox-flow and metal-air systems, can benefit from this compilation in order to
improve secondary zinc based batteries performance.Basque Country University
(ZABALDUZ2012 program), and the Basque Country Government
(Project: CIC energiGUNÉ16 of the ELKARTEK program) and the
European Commission through the project ZAS: “Zinc Air Secondary
innovative nanotech based batteries for efficient energy storage”
(Grant Agreement 646186
- …
