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Abstract 

 Aprotic electrolyte based lithium-oxygen batteries are of considerable interest due to its ultrahigh 

theoretical specific energy density (1675 mAh per gram of oxygen) against the present lithium-ion 

battery. In spite of the attractiveness of its high theoretical capacity, there is a number of drawbacks 

such as instability of electrochemical reaction of electrode and electrolytes. In order to overcome these 

parasitic reactions, significant efforts have been devoted to developing the key materials such as carbon-

free air cathodes and high concentrated electrolytes. However, the CO2 evolution during the charging 

process and low ionic conductivity limit the ideal electrochemical reaction in aprotic electrolytes. 

In this thesis, we applied the molten electrolyte based on nitrate-based electrolyte (Li/Na/K/Cs/Ca-NO3). 

The molten electrolyte, which has a eutectic point of 65℃, has the advantages of high stability and 

high-temperature operation, thereby preventing detrimental solvent byproducts in lithium-oxygen 

batteries. We examined the Oxygen Evolution Reaction (OER) and Oxygen Reduction Reaction (ORR) 

on operating temperature using in situ pressure drop and gas analyses, Differential Electrochemical 

Mass Spectrometry (DEMS). Our results demonstrated that the Li2O2, a discharge product, formed a 

stable hexagonal morphology in the lithium-oxygen battery upon discharge process by scanning 

electron microscopy and X-ray diffraction techniques. Also, it leads to improved oxygen mobility at 

high temperature since a molten salt was used as the electrolyte in lithium-oxygen batteries. In addition, 

we found that kinetics are improved with increasing operating temperature in molten salt electrolyte 

cells. 
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Chapter 1 

 

1. Organic-free electrolyte for stable lithium-oxygen batteries 

1.1 Introduction of rechargeable lithium-oxygen batteries 

Even though current developments of lithium-ion batteries have commercialized in the portable 

device market, there is a limit to meeting the needs of the electric vehicles (EV) market. For example, 

the current driving range of electric vehicles based on lithium-ion batteries is 200 km, which is not 

sufficient for long-distance driving.1 On the other hand, the lithium-oxygen battery has an extremely 

high theoretical specific energy (3505 Wh kg-1) as shown in Table 1 because it can store the discharge 

product, Li2O2 (lithium peroxide) in the pores of the cathode and uses light oxygen as a reactive 

product.2-3 

 

Table 1. Characteristics for major electrochemical reactions of energy-storage devices.2 

 

 
The first lithium-oxygen battery was introduced in 1996 by Abraham and Jiang.4 They used a polymer 

electrolyte membrane between the Li metal anode and the carbon electrode. A decade later, Bruce 

and his co-workers showed that the polymer electrolytes were replaced with organic electrolytes, 

resulting in a simpler structure and higher capacity than before. They has resulted in a worldwide 

contribution to the activation of lithium-oxygen battery research.5 In addition, in 2012, Bruce et al. 

demonstrated reversible lithium-oxygen battery operation for 100 cycles by using lithium perchlorate 

in dimethyl sulfoxide as the electrolyte and porous gold as the cathode.6 It has thus become clear that 

finding the optimum electrode and electrolyte is an important issue in the lithium-oxygen battery 

field. Most commonly known lithium-oxygen batteries generally use non-aqueous electrolytes, 

lithium foil as an anode material, and porous carbon as cathode material. The cathode functions as an 
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oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalyst. Since Li2O2 

generated at discharge determines the capacity of the battery, a cathode material having a large pore 

volume capable of storing Li2O2 is required.7 

The principle of a lithium-oxygen battery is to generate electricity through a chemical reaction 

between lithium metal and oxygen. In particular, Li2O2 is produced while consuming lithium ions and 

oxygen at the discharge, and this reaction occurs in the pores of the oxygen cathode. Conversely, during 

the charging process, the opposite process occurs and oxygen is generated. These chemical reactions 

are shown below.8 

 

2Li + O2 = Li2O2, ∆Go = -571.0 kJ mol-1 (Eo = 2.96 V) 
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1.2 Challenges of lithium-oxygen batteries 

Despite the superior merit of high theoretical capacity, there are still many problems in 

commercializing lithium-oxygen batteries. One important obstacle is their low round-trip efficiency 

(65%) due to parasitic side reactions and instability of the electrolyte.9-10 These problems are closely 

linked to the technical barriers that include instability between electrolyte and carbon electrode, kinetic 

of charging and discharging with slow discharge at the oxygen electrode. The side reaction products are 

generally insoluble and electrically insulating, gradually blocking the cathode during the battery cycle. 

Although the clogging of cathodes can be disassembled and removed during charging, the high 

overpotential required to oxidize them results in low round-trip efficiency. Specifically, considering that 

the latest lithium-ion battery efficiency is 98% or more, it has a very low efficiency of 65%. And, of 

course, battery cycle life will also be reduced during the continuous formation and oxidation of side 

reaction products. As a result, the development of a lithium-oxygen battery as a practical energy storage 

system (ESS) has a critical technical obstacle due to electrolyte instability. In addition, another problem 

with lithium-oxygen batteries is their inherent insoluble nature of Li2O2 produced during the discharge 

process. Li2O2 blocks the cathode surface, which is a small factor that hinders the extremely high 

theoretical capacity provided by conventional lithium and oxygen electrochemistry. Furthermore, the 

mechanism of Li2O2 in a particular electrolyte creates a large Li2O2 agglomerate at the cathode, which 

acts as an impediment to charge transfer during charging, resulting in high polarization. To overcome 

these problems, a lot of researchers have studied soluble catalysts known as redox mediators that 

facilitate the oxidation of Li2O2 during charging.11-14 However, the chemical instability of these types 

of materials during battery operation remains an unsolved problem. 
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1.3 Organic-free electrolyte for high oxygen efficiency 

In the case of an organic electrolyte composed of a salt and an organic solvent, since the organic 

solvent is decomposed at a high potential, researches have been conducted to minimize the use of an 

organic solvent such as a high concentration organic electrolyte, an ionic liquid, and a solid polymer 

electrolyte.15-17 Recently, Addison`s group proposed an innovative approach that does not use a solvent 

in the electrolyte to solve this fatal issue of organic solvent byproducts. They used a nitrate molten salt 

as the electrolyte in the lithium-oxygen battery to operate the battery above the eutectic point, resulting 

in a very low charging potential of 2.85 V, as well as an ideal oxygen evolution during charging.18 

 

1.4 A molten salt electrolyte 

Studies on molten nitrate salt electrolytes for thermal batteries date back to the 1980s. The reaction 

between Li metal and nitrate anions has been described as forming a solid-electrolyte interphase (SEI) 

layer composed of lithium oxide (Li2O), which is stable enough for primary and secondary cells.19 Also, 

Addison`s group predicted that since the electrolyte is operated at high temperature, the solubility of 

the discharge product (Li2O2) can be increased and the kinetic of the electrode will increase as compared 

to the room temperature organic electrolyte.18 

Here we attempt to reappear the stable electrolyte for reversible oxygen electrochemical reactions at the 

cathode using a molten nitrate salt combination such as LiNO3-KNO3 (eutectic point: 125℃), which 

has been reported previously. In addition, we will demonstrate the temperature effect of the molten salt 

electrolyte with lower eutectic points such as Li, Na, K, Ca, Cs-NO3 (eutectic point: 65℃) mixtures. 

The following figure 1.1 shows a molten salt electrolyte of five different nitrate salt applied to a lithium-

oxygen battery. We used differential electrochemical mass spectrometer (DEMS) instrument capable of 

pressure monitoring and real-time gas analysis to quantitatively analyze the oxygen electrode process, 

and x-ray diffraction (XRD) and scanning electron microscopy (SEM) were also performed to observe 

the discharge products at the oxygen electrode. 
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Figure 1.1 five different nitrate molten salts for lithium-oxygen batteries. 
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1.5 Experimental 

1.5.1 Preparation of a molten salt electrolyte and electrode 

LiNO3, NaNO3, KNO3, CsNO3 and Ca(NO3)2 were purchased from Sigma-Aldrich and kept in a 

glovebox filled with Ar. The chemical composition and melting point of each electrolyte tested are 

summarized in the table 2 below. 

 

Table 2. Molten nitrate salt electrolytes used in this work.18, 20 

 

 

Generally, the weight is measured according to the salt composition and then heated with a torch to 

impregnate the dissolved eutectic mixture with a 16 mm diameter glass fiber separator (GF/C, Whatman) 

depicted in Figure 1.2. 

 

 

Figure 1.2 Schematic illustrations of a method for a molten salt electrolyte. 

 

The oxygen electrode is made by mixing Super P carbon black (Timcal) and PTFE binder (Sigma-

Aldrich) at a mass ratio of 8:2 without catalyst. It is then dried in an oven at 120℃ overnight and then 

applied to a stainless steel mesh of 12 mm diameter. Typical carbon loading is 2 mg/cm2 and electrode 

surface area is 1.1304 cm2. 
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1.5.2 Assembly of the lithium-oxygen cell 

A coin-type lithium-oxygen laboratory battery consists of lithium metal, Super P cathodes and a glass 

fiber separator impregnated with a molten salt electrolyte in Figure 1.3. The cell assembly proceeded 

in a glovebox filled with argon with oxygen and moisture levels of less than 1 ppm. The coin cell is 

inserted into a cell holder for a lithium-oxygen battery and connected to a pressure sensor and a DEMS 

instrument capable of quantitative gas analysis. Pure oxygen gas is injected into the battery and leak 

test is carried out with positive pressure of about 1100 torr each time. 

 

 

Figure 1.3 2032 coin-type cell structure for lithium-oxygen battery and cell kit for high-temperature 

operation 
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1.5.3 Designing cell kit for high-temperature operation 

Since the cell is operated above the eutectic point, a cell kit with a high-temperature function was 

designed by tuning the cell kit at room temperature. As shown in Figure 1.4, we designed so that the 

battery voltage should be stable in a high-temperature environment and the temperature can be kept 

constant. Especially, the thermocouple was inserted in the middle to detect the temperature, the cartridge 

heater on both sides was allowed to heat, and the other side was electrically connected to the 2032 coin 

cell. The measurement was carried out after waiting until the specific temperature was reached 

according to the molten salt electrolyte used. 

 

 

 

 

 

 

 

Figure 1.4 cell kit design for high-temperature operation 
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1.5.4 Oxygen efficiency measurement using differential electrochemical mass 

spectrometry (DEMS) and electrochemical analysis 

Analysis with a DEMS instrument allows pressure monitoring during the discharge to determine the 

exact amount of oxygen consumed and provides a precise amount of oxygen evolved during charging 

through the mass spectrometer. Therefore, the oxygen efficiency of the OER/ORR can be obtained 

through the DEMS instrument shown in Figure 1.5 below. In addition to oxygen, byproduct gases such 

as carbon dioxide and hydrogen can be measured, and it is possible to know the occurrence of a side 

reaction in a specific potential, and thus it is utilized as a powerful analysis tool in a lithium-oxygen 

battery. 

 

 

Figure 1.5 Differential Electrochemical Mass Spectrometry (DEMS) instrument for oxygen efficiency 

measurement of lithium-oxygen batteries. 

 

To evaluate battery performance such as capacity and voltage, galvanostatic cycling at a constant current 

(200 μA) and linear sweep voltammetry (LSV) analysis were performed simultaneously with the 

DEMS analysis. The electrochemical performances were measured using a potentio-galvanostat 

(WonATech, WBCS 3000, Korea). For LSV analysis, the cell potential was linearly swept from OCV 

to 3.7 V at a scan rate of 0.05 mV/s. Tetraethylene glycol dimethyl ether (TEGDME) and lithium 
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bis(trifluoromethylsulfonyl) imide (LiTFSI) were purchased from Sigma-Aldrich for the effect of 

temperature on the organic electrolyte. The electrolyte was prepared by dissolving LiTFSI in TEGDME 

at a concentration of 1 M and refining the moisture using 4 Å  molecular sieves (Sigma-Aldrich). All 

electrolyte preparation procedures were carried out in a glovebox filled with Ar. A glass fiber (Whatman) 

with a diameter of 19 mm containing 150 μL of the electrolyte was used in the battery. For the discharge 

product analysis, the cathode surface was analyzed for each cycle step using XRD (Bruker D8 Advance 

with Cu Kα from 20 to 70° at a scan rate of 2° min-1). Generally, in the case of the cathode, the cell 

was disassembled after cooling and the cathode was extracted and washed with NMA solvent to remove 

the nitrate salt from the residue. The electrode was then sealed with a Kapton tape to prevent exposure 

to air. SEM analysis was performed using a Hitachi High-Technologies, S-4800 instrument and 

electrode preparation similar to XRD was rinsed with NMA solvent before entering the analyzer. 
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1.6 Result and Discussion 

Figure 1.6.a shows a SEM image and an optical photograph (inset) of a glass fiber separator 

containing a molten salt electrolyte of LiNO3-KNO3. Figure 1.6.b shows a detailed phase diagram 

showing the eutectic point behavior of molten salts. The coin type cell inserted in figure 1.b shows 

before (two solid phase) and after (one liquid phase) the eutectic point. 

 

 

Figure 1.6 (a) SEM image of the prepared a molten salt electrolyte (LiNO3-KNO3) and inset is an 

optical photograph, (b) Phase diagram of binary mixture. 
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The performance of a molten salt electrolyte was examined using a coin-type cell composed of a 

lithium metal anode, molten salt electrolyte (LiNO3-KNO3) impregnated into a glass fiber separator at 

150℃, and a porous Super P cathode. The cell was run with a capacity (1 mAh) after fully discharging 

to avoid side reactions. Figure 1.7.a is the voltage profile of discharging and charging at 200 μA 

constant current as a result of reappearing previously reported data. It is confirmed that the binary 

molten salt shows very low voltage gap (~0.1 V) in agreement with the results of the previous paper.18 

Figure 1.7.b shows the results of the in situ gas analysis, in which the oxygen gas increases at the 

beginning of the charge and remains constant during the entire charge cycle. It also showed that no 

other gases such as carbon dioxide and nitric oxide were produced. 

 

Figure 1.7 (a) Galvanostatic discharge-charge profile to a 1 mAh cut off, (b) in situ gas analysis for 

lithium-oxygen battery during charging, applying a current of 200 μA and fixed capacity regime of 1 

mAh. 
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Figure 1.8 shows the result of gas evolution analysis while charging from OCV to 3.7 V at a scan rate 

of 0.05 mV/s using LSV-DEMS analysis. Oxygen evolution reaction occurs from 2.8 V to 3.0 V, with 

a maximum of 2.9 V. Other gases such as carbon dioxide and nitric oxide are monitored in the 3.3-3.7 

V range. These would arise from oxidation reactions of the carbon electrode material and the electrolyte 

materials, NO3
-. 

 

 

Figure 1.8 LSV-DEMS analysis of gas evolution with charging at a scan rate of 0.05 mV/s. 
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Previously, the binary mixture electrolyte was successfully reproduced and then LiNO3-NaNO3-KNO3-

CsNO3-Ca(NO3)2 the eutectic mixture having a lower eutectic point was found and operated at 100℃. 

The quinary mixture of nitrate salts has a lower melting point (65℃) than the binary mixture, enabling 

it to operate at lower temperatures. Figure 1.9 shows a photograph at 100℃ of the left vial showing a 

solid phase with five different salts and a right vial showing the molten salt in one liquid phase after 

passing through the melting point. 

 

 

Figure 1.9 Photograph at 100℃ of the prepared quinary mixture before and after passing melting 

points. 
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Figure 1. 10 shows the temperature-dependent voltage profile of a lithium-oxygen battery using 

quinary molten salt electrolyte and oxygen evolution during charging. As the temperature increases, the 

overpotential of the cell decreases (especially the charging voltage is greatly reduced) and the oxygen 

evolution reaction increases. For example, figure 1.10.a, c and e show that as the temperature gradually 

increases from 100℃ to 120℃ to 150℃, the maximum charge voltage gradually decreases from 3.84 

V to 3.44 V to 2.93 V. These temperature-related trends were also associated with DEMS results, which 

indicate oxygen evolution efficiency during charging. As the temperature increased, the OER/ORR ratio 

also increased to 51%, 65%, and 90%. This is because not only the mobility of oxygen in the electrolyte 

is increased, but also the viscosity of the electrolyte is decreased, and the resistance required for 

decomposition of Li2O2, the discharge product is reduced by increasing the solubility of Li2O2. 

 

 

Figure 1.10 Galvanostatic discharge-charge voltage profile using a quinary molten salt electrolyte 

with in situ DEMS analysis for lithium-oxygen battery during charging, applying a current of 200 μA 

and a fixed capacity regime of 1 mAh (a,b) at 100℃. (c,d) at 120℃. (e,f) at 150℃ (the dotted line in b, 

d, f indicates the ideal 2 e-/O2 process). 
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For the characterization of discharge products, the oxygen side of the cathode was analyzed by XRD 

and SEM after fully discharging in an oxygen atmosphere (Figure 1. 11). The XRD results clearly show 

that crystalline Li2O2 is clearly formed on the surface of the cathode after discharge, depending on the 

temperature. SEM analysis was also carried out to investigate the morphology of the discharge products 

at the oxygen electrode. In general, particles with a size of less than 20 microns were observed on the 

cathode surface and the morphology of Li2O2 was hexagonal. The hexagonal form is known to be the 

most stable morphology of Li2O2.
21-22 Figure 1.11.b is a SEM image of a quinary molten salt comparing 

the surface of a completely discharged carbon cathode under oxygen with temperature. As the 

temperature increases, the size of the discharge product, Li2O2, decreases. The carbon electrode was 

prepared by rinsing with NMA solvent to remove residual nitrate salt. 

 

 

Figure 1. 11 (a) XRD and (b) SEM analysis of a Super P carbon electrode after a full discharge in 

quinary molten salt electrolyte at 100, 120, 150℃. 
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To further investigate the effect of temperature on charging overpotentials in a lithium-oxygen cell, 

the temperature-dependent LSV-DEMS analysis was performed in Figure 1. 12. It clearly shows that 

the anodic current appears at the lower potential as temperature increases. This is because the solubility 

of Li2O2 as an intermediate and Li2O2 as a discharge product increases with increasing temperature. At 

150℃ , the kinetic of the electrode would increase and the ionic conductivity of the molten salt 

electrolyte would increase and the internal cell resistance would have decreased. The higher the 

temperature, the more the anodic peak moves to the left and the oxygen generating peaks move 

accordingly. In all cases, the decomposition of the molten salt electrolyte results in the generation of 

nitric oxide gas from 3.4 V. And decomposition of carbon becomes evident above 3.6 V. 

 

 

Figure 1. 12 LSV-DEMS analysis showing oxygen, nitric oxide, carbon dioxide gas evolution and 

anodic peak from 2.8 V to 3.8 V at a scan rate of 0.05 mV/s (a) at 100 ℃, (b) at 120 ℃, (c) at 150 ℃. 
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Figure 1. 13 shows ORR discharge graphs and power measurement of a lithium-oxygen cell at 

different temperatures. This graph was obtained by sweeping the current from 0 mA to -24 mA at a scan 

rate of -0.05 mA s-1 and discharging at a cut-off condition of 0.2 V. The maximum power value increases 

nearly 18 times from 0.76 mW to 13.67 mW when the operating temperature is increased from 100 to 

150℃. 

 

 

Figure 1. 13 Effect of temperature on power performance of lithium-oxygen cell. 
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The rate capability experiment was also performed at 150℃. The discharge and charge voltage 

profiles for different currents at 150℃  are shown in Figure 1. 14. As the current increases, the 

overpotential increases slightly. This demonstrates that using molten salt electrolytes at high 

temperatures, the battery conversion efficiency is high even under harsh conditions such as high current. 

 

 

Figure 1. 14 Discharge and charge voltage profile of lithium-oxygen cell at different current at 150℃. 

 

As the temperature increases, the viscosity of the electrolyte decreases, which leads to the effect of 

facilitating the movement of oxygen and lithium ions. We have observed the positive effect of 

temperature on the molten salt electrolyte in terms of voltage gap and power. 
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1.7 Conclusion 

We found that by replacing volatile and unstable organic electrolytes with inorganic electrolytes, they 

are chemically very stable in lithium-oxygen batteries. We have reproduced that the experiment using 

the binary mixture electrolyte, a previously reported alkali nitrate salt, and studied the oxygen 

electrochemical reaction with the temperature effect using a quinary mixture with a lower melting point. 

Oxygen reduction reaction revealed that it was a 2 e-/O2 reaction. The XRD confirmed that the most 

stable Li2O2 form, hexagonal shape, and the ORR kinetic at higher temperature were further increased. 

The oxygen evolution reaction proceeded by gas analysis and observed not only the ideal oxygen 

evolution but also the decomposition of the electrolyte at 3.4 V by the LSV-DEMS analysis. 
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Chapter 2 

 

2. Organic-free electrolyte for rechargeable lithium-carbon dioxide batteries 

2.1 Introduction of rechargeable lithium-carbon dioxide batteries 

Over the past decade, metal-air batteries have received huge worldwide attention, but technical 

limitations remain a problem. It has a very large energy density because it can be used as oxygen 

electrode rather than storing the active cathode material in a battery. Lithium-oxygen battery, which 

uses pure oxygen, has a disadvantage in that it has many limitations to replace atmospheric air and 

is vulnerable to water and carbon dioxide.23 Carbon dioxide is present in very low concentrations in 

the atmosphere, but it has excellent solubility in organic solvents, 50 times better than oxygen, and 

is highly reactive.24 Interestingly, recently, a study on lithium-carbon dioxide using CO2 itself as a 

reaction gas has emerged as an eco-friendly battery capable of mitigating a large amount of CO2 

emissions. This battery has been known to be based on the reaction of 4Li + 3CO2 ↔ 2Li2CO3 + 

C.25-27 The concept of a Li-CO2 primary battery using an ionic liquid at high temperature was first 

introduced by the Archer group and then the rechargeable Li-CO2 secondary battery was developed 

by applying a liquid organic electrolyte.25, 28 However, Li2CO3, which is discharge product of Li-CO2 

battery compared to amorphous porous Li2O2, which is a discharge product of Li-O2 battery, is a thick, 

polymer-like shape without pores. This limits the electrochemical performance and causes a large 

polarization. To solve this problem, the reversible Li-CO2 battery with high discharge capacity (8829 

mAh g-1) and high coulombic efficiency of 86.2 % in the first cycle was obtained by using ruthenium, 

which has excellent catalytic activity in the Zhou group, as the cathode catalyst of the Li-CO2 

battery.29  

In this work, we report on the application of organic electrolytes and inorganic electrolytes for Li-

CO2 batteries. Especially, the decomposition reaction of Li2CO3 was analyzed by in situ gas analysis. 
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2.2 Experimental 

Here, we have constructed a Li-CO2 battery consisting of a lithium foil anode and an organic-free 

binary molten salt (LiNO3-KNO3) electrolyte and a Super P cathode. For the organic electrolyte, 1 M 

LiTFSI in TEGDME was used. The same as the above-mentioned experimental method in Chapter 1, 

but the only difference is that the reactant gas is changed by injecting carbon dioxide gas instead of 

oxygen gas. The assembled Li-CO2 battery is operated into a coin-type cell at a fixed capacity of 1 mAh. 

This study shows the basic research process of the Li-CO2 battery. The configuration of the Li-CO2 

battery using molten salt electrolytes is depicted in Figure 2.1. In addition, in order to understand the 

electrochemical oxidation of Li2CO3, an electrode filled with Li2CO3 and a conductive carbon material 

showing a discharged state was used.30 A DEMS instrument was used to analyze the gas generated 

during charging with this pre-filled electrode, and XRD was used to analyze the components of the 

electrode. 
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Figure 2.1 lithium and potassium nitrate molten salts for lithium-carbon dioxygen batteries. 
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2.3 Result and discussion 

Figure 2.2 shows the result of applying a general organic electrolyte, 1 M LiTFSI in TEGDME and 

Ketjen black (KB) electrode. The charging voltage of the inorganic (molten salt, LiNO3-KNO3) 

electrolyte was 3.2 V, which was lower than the charging voltage of organic electrolyte of 4.5 V, but the 

inorganic electrolyte did not generate carbon dioxide. Studies on gaseous charged products and 

electrolytes should be further investigated. 

 

 

Figure 2.2 The first discharge/charge profiles with 1 M LiTFSI in TEGDME electrolyte (a) and 

molten salts electrolyte, LiNO3-KNO3 (b). Gas evolution profile during charge process of Li-CO2 cell 

with limited capacity of 0.25 mAh obtained using in-situ DEMS anlaysis using organic electrolyte (c) 

and inorganic electrolyte (d). 
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XRD analysis of the Li-CO2 cell shown in Figure 2.3 demonstrates that the discharge product, Li2CO3, 

is more evident in the inorganic electrolyte (LiNO3-KNO3 molten salt) after discharge. The research on 

the discharge products according to the electrolyte should be further proceeded. 

 

 

Figure 2.3 XRD analysis of the cathode in Li-CO2 battery following an OCV (before discharge), a 

discharge in organic electrolyte (1 M LiTFSI in TEGDME), and a discharge in inorganic electrolyte 

(LiNO3-KNO3 molten salt) at 150℃. 
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Figure 2.4 shows the charge profile of the electrode pre-filled with conductive carbon material and 

Li2CO3 when organic and inorganic electrolytes were used. As shown in Figure 2.2, only Li2CO3 was 

decomposed in the organic electrolyte, but no gas was produced in the inorganic electrolyte. 

 

 

Figure 2.4 Charge profile and gas evolution profile during charging of the cathode electrode pre-

filled by Li2CO3 with KB as conductive additive under argon atmosphere with Li foil as anode. (a,c) 1 

M LiTFSI in TEGDME was used as organic electrolyte. (b,d) LiNO3-KNO3 molten salt was used as 

inorganic electrolyte. 
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When an organic electrolyte and an inorganic electrolyte are used, a conductive carbon material and 

Iridium having an excellent catalytic activity for Li2CO3 are added to the electrode, and the charging 

profile of the electrode is shown in Figure 2.4. It was found that the charging voltage slightly reduced 

when the Ir catalyst was used and the decomposition efficiency of Li2CO3 was increased in the case of 

the organic electrolyte. However, it was confirmed that Li2CO3 was decomposed and not released into 

CO2 even in the case of molten salt electrolyte when using Ir catalyst. 

 

 

Figure 2.5 Charge profile and gas evolution profile during charging of the cathode electrode pre-

filled by Li2CO3 and KB with Ir as catalyst for Li2CO3 decomposition under argon atmosphere with Li 

foil as anode. (a.c) 1 M LiTFSI in TEGDME was used as organic electrolyte. (b,d) LiNO3-KNO3 molten 

salt was used as inorganic electrolyte. 
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2.4 Conclusions 

In summary, we investigated the electrochemical reactions of Li2CO3 formation and oxidation using 

organic electrolytes and inorganic electrolytes. XRD analysis also confirmed that Li2CO3 were major 

discharge products. Additionally, DEMS analysis confirmed that CO2 was detected as the main gas 

product the charging process using Li2CO3 electrode. In the case of organic electrolytes, the excellent 

catalytic activity of Ir@KB lowers the charging voltage and increases the amount of CO2 generated. 
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