1,063 research outputs found

    Power models, energy models and libraries for energy-efficient concurrent data structures and algorithms

    Get PDF
    EXCESS deliverable D2.3. More information at http://www.excess-project.eu/This deliverable reports the results of the power models, energy models and librariesfor energy-efficient concurrent data structures and algorithms as available by projectmonth 30 of Work Package 2 (WP2). It reports i) the latest results of Task 2.2-2.4 onproviding programming abstractions and libraries for developing energy-efficient datastructures and algorithms and ii) the improved results of Task 2.1 on investigating andmodeling the trade-off between energy and performance of concurrent data structuresand algorithms. The work has been conducted on two main EXCESS platforms: Intelplatforms with recent Intel multicore CPUs and Movidius Myriad platforms

    Models for energy consumption of data structures and algorithms

    Get PDF
    EXCESS deliverable D2.1. More information at http://www.excess-project.eu/This deliverable reports our early energy models for data structures and algorithms based on both micro-benchmarks and concurrent algorithms. It reports the early results of Task 2.1 on investigating and modeling the trade-off between energy and performance in concurrent data structures and algorithms, which forms the basis for the whole work package 2 (WP2). The work has been conducted on the two main EXCESS platforms: (1) Intel platform with recent Intel multi-core CPUs and (2) Movidius embedded platform

    White-box methodologies, programming abstractions and libraries

    Get PDF
    EXCESS deliverable D2.2. More information at http://www.excess-project.eu/This deliverable reports the results of white-box methodologies and early results ofthe first prototype of libraries and programming abstractions as available by projectmonth 18 by Work Package 2 (WP2). It reports i) the latest results of Task 2.2on white-box methodologies, programming abstractions and libraries for developingenergy-efficient data structures and algorithms and ii) the improved results of Task2.1 on investigating and modeling the trade-off between energy and performance ofconcurrent data structures and algorithms. The work has been conducted on two mainEXCESS platforms: Intel platforms with recent Intel multicore CPUs and MovidiusMyriad1 platform

    Parallel Processes in HPX: Designing an Infrastructure for Adaptive Resource Management

    Get PDF
    Advancement in cutting edge technologies have enabled better energy efficiency as well as scaling computational power for the latest High Performance Computing(HPC) systems. However, complexity, due to hybrid architectures as well as emerging classes of applications, have shown poor computational scalability using conventional execution models. Thus alternative means of computation, that addresses the bottlenecks in computation, is warranted. More precisely, dynamic adaptive resource management feature, both from systems as well as application\u27s perspective, is essential for better computational scalability and efficiency. This research presents and expands the notion of Parallel Processes as a placeholder for procedure definitions, targeted at one or more synchronous domains, meta data for computation and resource management as well as infrastructure for dynamic policy deployment. In addition to this, the research presents additional guidelines for a framework for resource management in HPX runtime system. Further, this research also lists design principles for scalability of Active Global Address Space (AGAS), a necessary feature for Parallel Processes. Also, to verify the usefulness of Parallel Processes, a preliminary performance evaluation of different task scheduling policies is carried out using two different applications. The applications used are: Unbalanced Tree Search, a reference dynamic graph application, implemented by this research in HPX and MiniGhost, a reference stencil based application using bulk synchronous parallel model. The results show that different scheduling policies provide better performance for different classes of applications; and for the same application class, in certain instances, one policy fared better than the others, while vice versa in other instances, hence supporting the hypothesis of the need of dynamic adaptive resource management infrastructure, for deploying different policies and task granularities, for scalable distributed computing

    Towards Intelligent Runtime Framework for Distributed Heterogeneous Systems

    Get PDF
    Scientific applications strive for increased memory and computing performance, requiring massive amounts of data and time to produce results. Applications utilize large-scale, parallel computing platforms with advanced architectures to accommodate their needs. However, developing performance-portable applications for modern, heterogeneous platforms requires lots of effort and expertise in both the application and systems domains. This is more relevant for unstructured applications whose workflow is not statically predictable due to their heavily data-dependent nature. One possible solution for this problem is the introduction of an intelligent Domain-Specific Language (iDSL) that transparently helps to maintain correctness, hides the idiosyncrasies of lowlevel hardware, and scales applications. An iDSL includes domain-specific language constructs, a compilation toolchain, and a runtime providing task scheduling, data placement, and workload balancing across and within heterogeneous nodes. In this work, we focus on the runtime framework. We introduce a novel design and extension of a runtime framework, the Parallel Runtime Environment for Multicore Applications. In response to the ever-increasing intra/inter-node concurrency, the runtime system supports efficient task scheduling and workload balancing at both levels while allowing the development of custom policies. Moreover, the new framework provides abstractions supporting the utilization of heterogeneous distributed nodes consisting of CPUs and GPUs and is extensible to other devices. We demonstrate that by utilizing this work, an application (or the iDSL) can scale its performance on heterogeneous exascale-era supercomputers with minimal effort. A future goal for this framework (out of the scope of this thesis) is to be integrated with machine learning to improve its decision-making and performance further. As a bridge to this goal, since the framework is under development, we experiment with data from Nuclear Physics Particle Accelerators and demonstrate the significant improvements achieved by utilizing machine learning in the hit-based track reconstruction process
    • …
    corecore