1,244 research outputs found

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    A Smart Game for Data Transmission and Energy Consumption in the Internet of Things

    Get PDF
    The current trend in developing smart technology for the Internet of Things (IoT) has motivated a lot of research interest in optimizing data transmission or minimizing energy consumption, but with little evidence of proposals for achieving both objectives in a single model. Using the concept of game theory, we develop a new MAC protocol for IEEE 802.15.4 and IoT networks in which we formulate a novel expression for the players' utility function and establish a stable Nash equilibrium (NE) for the game. The proposed IEEE 802.15.4 MAC protocol is modeled as a smart game in which analytical expressions are derived for channel access probability, data transmission probability, and energy used. These analytical expressions are used in formulating an optimization problem (OP) that maximizes data transmission and minimizes energy consumption by nodes. The analysis and simulation results suggest that the proposed scheme is scalable and achieves better performance in terms of data transmission, energy-efficiency, and longevity, when compared with the default IEEE 802.15.4 access mechanism.Peer reviewe

    A Joint Model for IEEE 802.15.4 Physical and Medium Access Control Layers

    Full text link
    Many studies have tried to evaluate wireless networks and especially the IEEE 802.15.4 standard. Hence, several papers have aimed to describe the functionalities of the physical (PHY) and medium access control (MAC) layers. They have highlighted some characteristics with experimental results and/or have attempted to reproduce them using theoretical models. In this paper, we use the first way to better understand IEEE 802.15.4 standard. Indeed, we provide a comprehensive model, able more faithfully to mimic the functionalities of this standard at the PHY and MAC layers. We propose a combination of two relevant models for the two layers. The PHY layer behavior is reproduced by a mathematical framework, which is based on radio and channel models, in order to quantify link reliability. On the other hand, the MAC layer is mimed by an enhanced Markov chain. The results show the pertinence of our approach compared to the model based on a Markov chain for IEEE 802.15.4 MAC layer. This contribution allows us fully and more precisely to estimate the network performance with different network sizes, as well as different metrics such as node reliability and delay. Our contribution enables us to catch possible failures at both layers.Comment: Published in the proceeding of the 7th International Wireless Communications and Mobile Computing Conference (IWCMC), Istanbul, Turkey, 201

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks
    • …
    corecore