3,944 research outputs found

    Mobility Increases the Data Offloading Ratio in D2D Caching Networks

    Full text link
    Caching at mobile devices, accompanied by device-to-device (D2D) communications, is one promising technique to accommodate the exponentially increasing mobile data traffic. While most previous works ignored user mobility, there are some recent works taking it into account. However, the duration of user contact times has been ignored, making it difficult to explicitly characterize the effect of mobility. In this paper, we adopt the alternating renewal process to model the duration of both the contact and inter-contact times, and investigate how the caching performance is affected by mobility. The data offloading ratio, i.e., the proportion of requested data that can be delivered via D2D links, is taken as the performance metric. We first approximate the distribution of the communication time for a given user by beta distribution through moment matching. With this approximation, an accurate expression of the data offloading ratio is derived. For the homogeneous case where the average contact and inter-contact times of different user pairs are identical, we prove that the data offloading ratio increases with the user moving speed, assuming that the transmission rate remains the same. Simulation results are provided to show the accuracy of the approximate result, and also validate the effect of user mobility.Comment: 6 pages, 5 figures, accepted to IEEE Int. Conf. Commun. (ICC), Paris, France, May 201

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201
    • …
    corecore