615 research outputs found

    Performance evaluation of non-prefiltering vs. time reversal prefiltering in distributed and uncoordinated IR-UWB ad-hoc networks

    Get PDF
    Time Reversal (TR) is a prefiltering scheme mostly analyzed in the context of centralized and synchronous IR-UWB networks, in order to leverage the trade-off between communication performance and device complexity, in particular in presence of multiuser interference. Several strong assumptions have been typically adopted in the analysis of TR, such as the absence of Inter-Symbol / Inter-Frame Interference (ISI/IFI) and multipath dispersion due to complex signal propagation. This work has the main goal of comparing the performance of TR-based systems with traditional non-prefiltered schemes, in the novel context of a distributed and uncoordinated IR-UWB network, under more realistic assumptions including the presence of ISI/IFI and multipath dispersion. Results show that, lack of power control and imperfect channel knowledge affect the performance of both non-prefiltered and TR systems; in these conditions, TR prefiltering still guarantees a performance improvement in sparse/low-loaded and overloaded network scenarios, while the opposite is true for less extreme scenarios, calling for the developement of an adaptive scheme that enables/disables TR prefiltering depending on network conditions

    Large System Analysis of Game-Theoretic Power Control in UWB Wireless Networks with Rake Receivers

    Full text link
    This paper studies the performance of partial-Rake (PRake) receivers in impulse-radio ultrawideband wireless networks when an energy-efficient power control scheme is adopted. Due to the large bandwidth of the system, the multipath channel is assumed to be frequency-selective. By using noncooperative game-theoretic models and large system analysis, explicit expressions are derived in terms of network parameters to measure the effects of self- and multiple-access interference at a receiving access point. Performance of the PRake is compared in terms of achieved utilities and loss to that of the all-Rake receiver.Comment: To appear in the Proceedings of the 8th IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Helsinki, Finland, June 17-20, 200

    Performance Evaluation of Impulse Radio UWB Systems with Pulse-Based Polarity Randomization

    Full text link
    In this paper, the performance of a binary phase shift keyed random time-hopping impulse radio system with pulse-based polarity randomization is analyzed. Transmission over frequency-selective channels is considered and the effects of inter-frame interference and multiple access interference on the performance of a generic Rake receiver are investigated for both synchronous and asynchronous systems. Closed form (approximate) expressions for the probability of error that are valid for various Rake combining schemes are derived. The asynchronous system is modelled as a chip-synchronous system with uniformly distributed timing jitter for the transmitted pulses of interfering users. This model allows the analytical technique developed for the synchronous case to be extended to the asynchronous case. An approximate closed-form expression for the probability of bit error, expressed in terms of the autocorrelation function of the transmitted pulse, is derived for the asynchronous case. Then, transmission over an additive white Gaussian noise channel is studied as a special case, and the effects of multiple-access interference is investigated for both synchronous and asynchronous systems. The analysis shows that the chip-synchronous assumption can result in over-estimating the error probability, and the degree of over-estimation mainly depends on the autocorrelation function of the ultra-wideband pulse and the signal-to-interference-plus-noise-ratio of the system. Simulations studies support the approximate analysis.Comment: To appear in the IEEE Transactions on Signal Processin

    Distributed Power Control Techniques Based on Game Theory for Wideband Wireless Networks

    Get PDF
    This thesis describes a theoretical framework for the design and the analysis of distributed (decentralized) power control algorithms for high-throughput wireless networks using ultrawideband (UWB) technologies. The tools of game theory are shown to be expedient for deriving scalable, energy-efficient, distributed power control schemes to be applied to a population of battery-operated user terminals in a rich multipath environment. In particular, the power control issue is modeled as a noncooperative game in which each user chooses its transmit power so as to maximize its own utility, which is defined as the ratio of throughput to transmit power. Although distributed (noncooperative) control is known to be suboptimal with respect to the optimal centralized (cooperative) solution, it is shown via large-system analysis that the game-theoretic distributed algorithm based on Nash equilibrium exhibits negligible performance degradation with respect to the centralized socially optimal configuration. The framework described here is general enough to also encompass the analysis of code division multiple access (CDMA) systems and to show that UWB slightly outperforms CDMA in terms of achieved utility at the Nash equilibrium

    A Statistical Analysis of Multipath Interference for Impulse Radio UWB Systems

    Full text link
    In this paper, we develop a statistical characterization of the multipath interference in an Impulse Radio (IR)-UWB system, considering the standardized IEEE 802.15.4a channel model. In such systems, the chip length has to be carefully tuned as all the propagation paths located beyond this limit can cause interframe/intersymbol interferences (IFI/ISI). Our approach aims at computing the probability density function (PDF) of the power of all multipath components with delays larger than the chip time, so as to prevent such interferences. Exact analytical expressions are derived first for the probability that the chip length falls into a particular cluster of the multipath propagation model and for the statistics of the number of paths spread over several contiguous clusters. A power delay profile (PDP) approximation is then used to evaluate the total interference power as the problem appears to be mathematically intractable. Using the proposed closed-form expressions, and assuming minimal prior information on the channel state, a rapid update of the chip time value is enabled so as to control the signal to interference plus noise ratio.Comment: 17 pages, 9 figures; submitted to the Journal of the Franklin Institute on Sept. 24, 201
    • 

    corecore