29,330 research outputs found

    Preliminary Experiments using Subjective Logic for the Polyrepresentation of Information Needs

    Full text link
    According to the principle of polyrepresentation, retrieval accuracy may improve through the combination of multiple and diverse information object representations about e.g. the context of the user, the information sought, or the retrieval system. Recently, the principle of polyrepresentation was mathematically expressed using subjective logic, where the potential suitability of each representation for improving retrieval performance was formalised through degrees of belief and uncertainty. No experimental evidence or practical application has so far validated this model. We extend the work of Lioma et al. (2010), by providing a practical application and analysis of the model. We show how to map the abstract notions of belief and uncertainty to real-life evidence drawn from a retrieval dataset. We also show how to estimate two different types of polyrepresentation assuming either (a) independence or (b) dependence between the information objects that are combined. We focus on the polyrepresentation of different types of context relating to user information needs (i.e. work task, user background knowledge, ideal answer) and show that the subjective logic model can predict their optimal combination prior and independently to the retrieval process

    A survey on the use of relevance feedback for information access systems

    Get PDF
    Users of online search engines often find it difficult to express their need for information in the form of a query. However, if the user can identify examples of the kind of documents they require then they can employ a technique known as relevance feedback. Relevance feedback covers a range of techniques intended to improve a user's query and facilitate retrieval of information relevant to a user's information need. In this paper we survey relevance feedback techniques. We study both automatic techniques, in which the system modifies the user's query, and interactive techniques, in which the user has control over query modification. We also consider specific interfaces to relevance feedback systems and characteristics of searchers that can affect the use and success of relevance feedback systems

    CMIR-NET : A Deep Learning Based Model For Cross-Modal Retrieval In Remote Sensing

    Get PDF
    We address the problem of cross-modal information retrieval in the domain of remote sensing. In particular, we are interested in two application scenarios: i) cross-modal retrieval between panchromatic (PAN) and multi-spectral imagery, and ii) multi-label image retrieval between very high resolution (VHR) images and speech based label annotations. Notice that these multi-modal retrieval scenarios are more challenging than the traditional uni-modal retrieval approaches given the inherent differences in distributions between the modalities. However, with the growing availability of multi-source remote sensing data and the scarcity of enough semantic annotations, the task of multi-modal retrieval has recently become extremely important. In this regard, we propose a novel deep neural network based architecture which is considered to learn a discriminative shared feature space for all the input modalities, suitable for semantically coherent information retrieval. Extensive experiments are carried out on the benchmark large-scale PAN - multi-spectral DSRSID dataset and the multi-label UC-Merced dataset. Together with the Merced dataset, we generate a corpus of speech signals corresponding to the labels. Superior performance with respect to the current state-of-the-art is observed in all the cases
    corecore