11,843 research outputs found

    Metameric MIMO-OOK transmission scheme using multiple RGB LEDs

    Get PDF
    In this work, we propose a novel visible light communication (VLC) scheme utilizing multiple di erent red green and blue triplets each with a di erent emission spectrum of red, green and blue for mitigating the e ect of interference due to di erent colors using spatial multiplexing. On-o keying modulation is considered and its e ect on light emission in terms of flickering, dimming and color rendering is discussed so as to demonstrate how metameric properties have been considered. At the receiver, multiple photodiodes with color filter-tuned on each transmit light emitting diode (LED) are employed. Three di erent detection mechanisms of color zero forcing, minimum mean square error estimation and minimum mean square error equalization are then proposed. The system performance of the proposed scheme is evaluated both with computer simulations and tests with an Arduino board implementatio

    ASK-based spatial multiplexing RGB scheme using symbol-dependent self-interference for detection

    Get PDF
    We propose a vsible light communication scheme utilizing red, green and blue lightemitting diodes (LEDs) and three color-Tuned photodiodes. Amplitude shift keying modulation is considered, and its effect on light emission in terms of flickering, dimming, and color rendering is discussed. The presence of interference at each photodiode generated by the other two colors is used to improve detection since interference is symbol-dependent. Moreover, the capability of the photodiodes to follow the LEDs speed is considered by analyzing the possibility of equalizing the received signal, and also self-interference mitigation is proposed. The system performance is evaluated both with computer simulations and tests on an Arduino board implementation

    A measurement strategy for non-dispersive ultra-violet detection of formaldehyde in indoor air: Spectral analysis and interferent gases

    Get PDF
    We have conducted an extensive review of published spectra in order to identify a region with potential for detection of formaldehyde in indoor air. 85 chemicals and chemical groups common to the indoor environment were identified, 32 of which had absorption spectra in the UV-vis region. Of these, 11 were found to overlap with the formaldehyde UV region. It was found that the region between 320 to 360 nm is relatively free from interference from indoor gases, with NO being the only major interferent. A method is proposed for a low resolution (3 nm) spectroscopic detection method, specifically targeted at formaldehyde absorption features at 327 nm with a reference at 334 nm. 32 ppb of NO was found to have a cross-sensitivity with equivalent magnitude to 100 ppb of formaldehyde. A second reference at 348 nm would reduce this cross-sensitivity.This work was funded by the Engineering and Physics Science Research Council (EPSRC) under grants GR/T18424, EP/P504880 and EP/H02252X. Enquiries for access to the data referred to in this article should be directed to [email protected]

    Deep Learning Framework for Wireless Systems: Applications to Optical Wireless Communications

    Full text link
    Optical wireless communication (OWC) is a promising technology for future wireless communications owing to its potentials for cost-effective network deployment and high data rate. There are several implementation issues in the OWC which have not been encountered in radio frequency wireless communications. First, practical OWC transmitters need an illumination control on color, intensity, and luminance, etc., which poses complicated modulation design challenges. Furthermore, signal-dependent properties of optical channels raise non-trivial challenges both in modulation and demodulation of the optical signals. To tackle such difficulties, deep learning (DL) technologies can be applied for optical wireless transceiver design. This article addresses recent efforts on DL-based OWC system designs. A DL framework for emerging image sensor communication is proposed and its feasibility is verified by simulation. Finally, technical challenges and implementation issues for the DL-based optical wireless technology are discussed.Comment: To appear in IEEE Communications Magazine, Special Issue on Applications of Artificial Intelligence in Wireless Communication

    Experimental Demonstration of Staggered CAP Modulation for Low Bandwidth Red-Emitting Polymer-LED based Visible Light Communications

    Get PDF
    In this paper we experimentally demonstrate, for the first time, staggered carrier-less amplitude and phase (sCAP) modulation for visible light communication systems based on polymer light-emitting diodes emitting at ~639 nm. The key advantage offered by sCAP in comparison to conventional multiband CAP is its full use of the available spectrum. In this work, we compare sCAP, which utilises four orthogonal filters to generate the signal, with a conventional 4-band multi-CAP system and on-off keying (OOK). We transmit each modulation format with equal energy and present a record un-coded transmission speed of ~6 Mb/s. This represents gains of 25% and 65% over the achievable rate using 4-CAP and OOK, respectively.Comment: 6 pages, 9 figures, IEEE ICC 2019 conferenc

    A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications

    Get PDF
    The field of visible light communications (VLC) has gained significant interest over the last decade, in both fibre and free-space embodiments. In fibre systems, the availability of low cost plastic optical fibre (POF) that is compatible with visible data communications has been a key enabler. In free-space applications, the availability of hundreds of THz of the unregulated spectrum makes VLC attractive for wireless communications. This paper provides an overview of the recent developments in VLC systems based on gallium nitride (GaN) light-emitting diodes (LEDs), covering aspects from sources to systems. The state-of-the-art technology enabling bandwidth of GaN LEDs in the range of >400 MHz is explored. Furthermore, advances in key technologies, including advanced modulation, equalisation, and multiplexing that have enabled free-space VLC data rates beyond 10 Gb/s are also outlined
    corecore