4 research outputs found

    Effect of hydraulic conductivity and permeability on drug distribution, an investigation based on a part of a real tissue

    Full text link
    In this study, a computational simulation is employed to place two essential parameters, the permeability of vessels and hydraulic conductivity, under assessment. These parameters impact the movement of drug particles through vessels, and normal and tumoral tissue to examine the concentration of nanoparticles, interstitial pressure, and velocity. To provide a geometric model detailing the capillary network under normal and tumoral tissue conditions, the geometry is extracted via real image processing. Subsequently, the real conditions were considered to solve the equations pertaining to drug transport and intravascular and interstitial flows in the tissue. The results showed that an increase in permeability and hydraulic conductivity leads to an increase in drug concentration in the tumor. Finally, Methotrexate drug has the most effect in the treatment of tumors. Overall, the computational model for anti-cancer delivery provides a powerful tool for understanding and optimizing drug delivery strategies for the treatment of cancer.Comment: 15 page

    Effect of Fluid Friction on Interstitial Fluid Flow Coupled with Blood Flow through Solid Tumor Microvascular Network

    Get PDF
    A solid tumor is investigated as porous media for fluid flow simulation. Most of the studies use Darcy model for porous media. In Darcy model, the fluid friction is neglected and a few simplified assumptions are implemented. In this study, the effect of these assumptions is studied by considering Brinkman model. A multiscale mathematical method which calculates fluid flow to a solid tumor is used in this study to investigate how neglecting fluid friction affects the solid tumor simulation. The mathematical method involves processes such as blood flow through vessels and solute and fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. The sprouting angiogenesis model is used for generating capillary network and then fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network. Finally, the two models of porous media are used for modeling fluid flow in normal and tumor tissues in three different shapes of tumors. Simulations of interstitial fluid transport in a solid tumor demonstrate that the simplifications used in Darcy model affect the interstitial velocity and Brinkman model predicts a lower value for interstitial velocity than the values that Darcy model predicts

    The role of tumour vasculature in fluid flow and drug transport in solid tumours

    Get PDF
    The aberrance of the vasculature in tumours has been linked to increased aggressiveness and poor drug delivery in tumours. Complexities in the microarchitecture of tumour vasculature occurring on microscopic scales can affect fluid flow and drug transport making it difficult to predict tumour response to treatment. Given this, mathematical models can play an important role in understanding the various aspects of the tumour vasculature that can promote invasiveness and limit drug delivery. In this work, computational models are developed to investigate the effect of tumour vasculature on fluid flow and drug distribution and novel imaging methods are assessed for their ability to characterise the tumour vasculature in whole human tumours. A mathematical angiogenesis model is used to generate microscopic details including individual vessel properties on a whole vascular network scale which are coupled with a fluid flow and drug transport model. The interstitial fluid pressure (IFP) in the tumour model was found to be elevated with increased heterogeneity caused by the presence of a necrotic core and heterogenous vessel permeability. Subtle changes to the network on a microscopic scale significantly influenced fluid flow in the tumour vessels and tissue. Delivery of doxorubicin to tumours was found to be highly dependent on the properties of tumour vasculature and blood flow, where regions with excessive branching and vessel tortuosity had reduced drug concentrations due to poor blood flow. Hence, the vascular density was not found to be the main factor in the accumulation of the drug within the tissue space and it’s uptake by cancer cells. An interplay between treatment strategy including dose and administration mode and properties of the vasculature was found by evaluating the spatial intracellular concentration. The fluid flow and drug transport models showed the significant effect of incorporating the microscopic properties of the tumour vasculature which can influence fluid flow and drug distribution on a macroscopic scale. The imaging methods assessed in this work shows that Optical projection tomography combined with fluorescent Immunohistochemistry labelling methods can be used to extract angiogenesis related parameters in whole human tumours. Additionally, the method was able to extract clean network topologies that show promise in application to understanding fluid flow and drug transport in real tumours.Open Acces
    corecore