121 research outputs found

    Protein ADP-ribosylation in Triticum aestivus L.

    Get PDF

    Proteomics of Poly(ADP-ribose) Polymerases during DNA Replication and Repair

    Get PDF
    En 2017, Statistique Canada a rapportĂ© qu'un Canadien sur quatre mourra d’un cancer. Chaque jour, nous sommes confrontĂ©s Ă  des facteurs environnementaux qui imposent Ă  notre ADN un stress gĂ©notoxique. Ce stress peut avoir de graves consĂ©quences au point de menacer notre intĂ©gritĂ© gĂ©nomique, comme les cassures d'ADN double-brin (DSBs). Heureusement, nos cellules ont deux voies principales pour combattre ce type de lĂ©sions : la recombinaison homologue (HR) et la Classical Non-Homologous End-Joining (CNHEJ). La voie HR, un type de rĂ©paration sans erreur utilisĂ© dans la phase-S du cycle cellulaire, assure une rĂ©paration fidĂšle de la zone endommagĂ©e et conserve l'intĂ©gritĂ© de l'information gĂ©nĂ©tique. Les individus porteurs de mutations dans les protĂ©ines de cette voie, telles que BRCA1 et BCRA2, sont plus susceptibles de dĂ©velopper des cancers du sein et de l'ovaire. RĂ©cemment, la clinique a connu une percĂ©e majeure dans le traitement du cancer de l'ovaire. Une nouvelle classe de mĂ©dicaments a Ă©tĂ© autorisĂ©e par la US Food and Drug Administration (FDA) pour traiter les cancers de l'ovaire rĂ©currents qui prĂ©sentent une HR dĂ©fective. Ces mĂ©dicaments inhibent un des acteurs les plus prĂ©coces dans la rĂ©ponse aux dommages Ă  l'ADN (DDR): la PARP-1 (Poly(ADP-ribose) polymerase-1). Lors de l'induction de dommages Ă  l'ADN, la PARP-1 devient fortement activĂ©e, conduisant Ă  la production massive de polymĂšres de poly(ADP-ribose) (PAR) gĂ©nĂ©rĂ©s Ă  partir de l'hydrolyse du nicotinamide adĂ©nine dinuclĂ©otide. Ce polymĂšre agira comme une plateforme pour recruter des facteurs de rĂ©paration de l'ADN au site de rĂ©paration. L'application clinique rĂ©ussie des inhibiteurs de la PARP (PARPi) vient des observations oĂč les mutations ou l'extinction de BRCA1/2 entraĂźnent une diminution de l'activitĂ© HR. L'inhibition de la PARP-1 combinĂ©e Ă  cette dĂ©ficience en HR favorise la mort cellulaire, un phĂ©nomĂšne appelĂ© lĂ©talitĂ© synthĂ©tique. Trois PARPi sont actuellement autorisĂ©s par la FDA et sont utilisĂ©s pour le traitement du cancer gynĂ©cologique. MalgrĂ© l'efficacitĂ© thĂ©rapeutique de ces inhibiteurs, les mĂ©canismes induisant une rĂ©gression tumorale ne sont pas complĂštement compris. Ainsi, il devient extrĂȘmement important de dĂ©chiffrer davantage ces mĂ©canismes pour atteindre le plein potentiel des PARPi. Pour ce faire, une recherche fondamentale sur les fonctions des PARPs, et de leurs partenaires dans la DDR, est essentielle et constitue l'objectif gĂ©nĂ©ral de cette thĂšse. Durant mon doctorat, nous avons Ă©tudiĂ© l'influence de la PARP-1 dans la voie HR au moment de l'Ă©tape initiale de la rĂ©section, qui est essentielle pour l'Ă©limination de l'ADN endommagĂ©. Certaines Ă©tudes ont montrĂ© l'implication de la PARP-1 dans le recrutement de la protĂ©ine de rĂ©section MRE11. Ici, nous dĂ©montrons que la PARP-1 a une nouvelle fonction dans la rĂ©section des DSBs et nous proposons un nouveau modĂšle pour expliquer la lĂ©talitĂ© synthĂ©tique observĂ©e dans les tumeurs avec une HR dĂ©fective. Pour complĂ©ter l'objectif de ce doctorat, nous avons Ă©tudiĂ© les rĂŽles rĂ©gulateurs de la PARP-1 au cours du processus HR, mais plus tard dans la rĂ©solution des lĂ©sions, c'est-Ă -dire au maximum de la formation des foyers RAD51, une Ă©tape cruciale pour la rĂ©paration efficace des DSBs via la HR. Nous avons observĂ© que le PAR-interactome (PARylome) est, Ă  ce moment, fortement enrichi en protĂ©ines impliquĂ©es dans le mĂ©tabolisme de l'ARN. Plusieurs des protĂ©ines les plus abondantes Ă©taient constituĂ©es d’hĂ©licases d’ADN et d’ARN, et de facteurs de transcription. Puisque certains de ces gĂšnes sont mutĂ©s dans les tumeurs, ils pourraient thĂ©oriquement ĂȘtre des cibles prioritaires pour une utilisation conjointe avec des PARPi. Nous avons Ă©galement Ă©tendu notre Ă©tude de la PARylation Ă  la chromatine, au niveau des histones. Nous avons constatĂ© que les queues d'histones ne sont pas les seules cibles de la PARP-1 et que les domaines globulaires centraux sont Ă©galement PARylĂ©s. Finalement, le grand intĂ©rĂȘt clinique de la PARP-1 mĂ©ritait une analyse approfondie de son expression systĂ©mique. Ainsi, j'ai terminĂ© mes Ă©tudes en dĂ©crivant la distribution et l'abondance tissulaire de la PARP-1 dans les organes simiens, avec l'objectif principal de fournir des informations prĂ©cieuses quant Ă  l'efficacitĂ© potentielle des PARPi ou sa rĂ©sistance, dans un tissu donnĂ© et maladies apparentĂ©es. En rĂ©sumĂ©, cette thĂšse fournit de nouvelles informations importantes sur les mĂ©canismes orchestrĂ©s par la PARP-1 lors de la rĂ©ponse aux DSBs, y compris les rĂ©seaux protĂ©iques complexes engagĂ©s dans le remodelage des fonctions cellulaires nĂ©cessaire au maintien de l'intĂ©gritĂ© gĂ©nomique.In 2017, Statistics Canada reported that one out of four Canadians will die of cancer. Every day, we face environmental factors that burden our DNA with genotoxic stress. This stress can lead to severe types of DNA damage that can threaten our genomic integrity, namely double-strand breaks (DSBs). Fortunately, our cells have evolved with different repair mechanisms to deal with such lesions. There are two primary types of repair against DSBs: Homologous Recombination (HR) and Classical Non-Homologous End-Joining (CNHEJ). The HR pathway is an error-free repair mechanism used in the S-phase of the cell cycle to ensure faithful repair of the damaged area and thus preserve our genetic information. Individuals that bear mutations in proteins involved in this pathway, such as BRCA1 and BCRA2, have been associated with the development of breast and ovarian cancers. Almost 4 years ago, the field went through a major breakthrough in ovarian cancer care. A new class of drugs was accepted by the US Food and Drug Administration (FDA) to manage recurrent ovarian cancers that display HR-deficiencies. These drugs consist of inhibitor molecules against one of the earliest sensors of DNA damage in the cell: PARP-1 (poly(ADP-ribose) polymerase-1). Upon DNA damage induction, PARP-1 becomes highly activated, leading to the massive production of poly(ADP-ribose) (PAR) polymers, from the hydrolysis of nicotinamide adenine dinucleotide, which in turn modify several proteins posttranslationally and act as a scaffold to recruit DNA repair factors to the repair site. The successful application of PARP inhibitors (PARPi) arose from the observations that mutations or silencing of BRCA1/2, resulted in diminished HR activity. In the context of HR deficiency, the concomitant inhibition of PARP resulted in cell-death, an effect called synthetic lethality. Three PARPi are currently accepted by the FDA and are being clinically used for the treatment of gynaecological cancers. Notwithstanding the great promise of these inhibitors for other types of cancers, the mechanism by which these are inducing cancer lethality is not fully understood. Thus, it becomes of extreme importance to further decipher its mechanistic ways, to achieve full potential of PARPi in the clinic. To achieve this, fundamental research on the functions of PARPs and their protein partners in the DNA damage response is indispensable and constitutes the general aim of this thesis. During my doctoral work, we investigated the influence of PARP-1 during the HR pathway, primarily during the initial step of resection, which is essential for the removal of damaged DNA. Early reports of PARP-1 involvement in resection described the recruitment of the resection protein MRE11 to sites of damage in a PARP-1 dependent manner. Here, we demonstrate that PARP-1 has a novel function in DSB resection and we propose a new model for the synthetic lethality observed in HR-deficient tumors. To further complement the general aim of this doctorate, we investigated the regulatory roles of PARP-1 during the HR pathway, however in a later stage of HR resolution, at the peak formation of RAD51 foci, which is a crucial step for the efficient repair of DSBs through HR. We observed that the PAR-interactome (PARylome) at this stage was abundantly enriched with RNA-processing factors. Several of the most abundant proteins consisted of DNA and RNA helicases, as well as transcription factors, some of which were found to be mutated in tumors, and thus can be seen as potentially druggable targets to be used in combination with PARPi. We also extended our PARylome study to the chromatin proteome and investigated the histone PARylome upon DNA damage. Interestingly, we found that histone tails are not the only targets of PARP-1 and that globular domains are also targets of PARylation. Lastly, the high clinical interest of PARP-1 warrants studies addressing PARP-1 organ distribution. Thus, I finalized my studies by extensively describing and reporting PARP-1 tissular and cellular distribution and abundance in monkey organs, with the main objective of providing valuable information to any study assessing PARP inhibition efficacy and resistance in any given tissue and related diseases. In summary, this thesis provides important new information on the mechanisms PARP-1 is regulating during the response to DSBs, including the networks PARP-1 is orchestrating to potentially help reshape the cell environment, to efficiently repair the most lethal lesion our genome faces

    Charting PARP-1 dependent mechanisms for DNA double-strand break resection

    Get PDF
    L'intĂ©gritĂ© de l'ADN gĂ©nomique humain est maintenue par des systĂšmes de rĂ©paration de l'ADN qui protĂšgent les cellules des dommages causĂ©s par des agents environnementaux ou des lĂ©sions spontanĂ©es de l'ADN. Chaque cellule peut subir jusqu'Ă  10⁔ lĂ©sions par jour, y compris les cassures double-brin de l'ADN (CDB). La poly(ADPribosyl)ation (PARylation) est l'un des premiers Ă©vĂ©nements de signalisation molĂ©culaire survenant aux CDBs. Il est catalysĂ© par les poly(ADP-ribose)polymĂ©rases (PARP) qui sont directement activĂ©es par ces lĂ©sions d'ADN. Le fait de ne pas gĂ©nĂ©rer de poly(ADP)ribosyl (pADPr) en rĂ©ponse Ă  des dommages Ă  l'ADN par une inhibition chimique ou par l'absence de PARP-1 augmente la sensibilitĂ© cellulaire au stress gĂ©notoxique, indiquant que la pADPr elle-mĂȘme est une molĂ©cule clĂ© de signalisation des dommages Ă  l'ADN. L'inhibition de l'enzyme de signalisation des dommages Ă  l'ADN, la poly(ADP-ribose) polymĂ©rase-1 (PARP-1) est l'une des nouvelles thĂ©rapies les plus prometteuses contre le cancer. Les inhibiteurs de PARP sensibilisent les cellules cancĂ©reuses aux agents endommageant l'ADN et tuent efficacement les cellules cancĂ©reuses du sein, des ovaires et du pancrĂ©as dĂ©ficientes en BRCA1 (Breast Cancer gene 1) et BRCA2 (Breast Cancer gene 2), ce qui suggĂšre que les cellules dĂ©ficientes en rĂ©paration des CDBs sont extrĂȘmement sensibles Ă  l'inhibition de PARP. Pourtant, les mĂ©canismes sous-jacents Ă  cette lĂ©talitĂ© synthĂ©tique entre le dĂ©ficit de rĂ©paration du CDB et l'inhibition de PARP restent mal dĂ©finis. Il y a un dĂ©bat considĂ©rable sur le mĂ©canisme par lequel l'inhibition de PARP tue les cellules dĂ©ficientes en rĂ©paration de l'ADN, et le plein potentiel des inhibiteurs de PARP dans le traitement du cancer ne peut ĂȘtre obtenu que par une comprĂ©hension claire des voies de rĂ©ponse aux dommages de l'ADN (DDR) aux CDB et comment ils sont affectĂ©s par les inhibiteurs de PARP. L'objectif gĂ©nĂ©ral de ma thĂšse est d'Ă©tudier le rĂŽle de PARP-1 dans la rĂ©paration DSB et d'identifier les interacteurs de PARP-1 qui jouent Ă©galement un rĂŽle dans ce processus. Les cellules eucaryotes rĂ©parent les CDBs par deux voies principales, la jonction d'extrĂ©mitĂ© non homologue (NHEJ) et la recombinaison homologue (HR). La HR est initiĂ©e par la liaison des CDBs par BRCA1 et le complexe MRE11-RAD50-NBS1 et des nuclĂ©ases EXO1/DNA2 pour gĂ©nĂ©rer de l'ADN simple-brin, qui est ensuite utilisĂ© par la recombinase RAD51 et le complexe BRCA1-PALB2-BRCA2. Une question clĂ© dans notre domaine concerne les facteurs critiques pour rĂ©guler le choix de la voie CDB. HR est initiĂ©e Ă  partir d'extrĂ©mitĂ©s DSB hautement rĂ©sectĂ©es, tandis que dans le NHEJ, la rĂ©section est empĂȘchĂ©e par des facteurs de rĂ©paration clĂ©s incluant RIF1 et 53BP1. En utilisant des cellules dĂ©ficientes en PARP-1, nous avons observĂ© que deux inhibiteurs de la rĂ©section de l'ADN et des rĂ©gulateurs de choix de voie, RIF1 et 53BP1, la formation de foyers induits par des dommages Ă  l'ADN sont fortement altĂ©rĂ©s. Cela confirme notre hypothĂšse selon laquelle PARP-1 participe Ă  la rĂ©paration du DSB en influençant la rĂ©section de l'ADN. Afin de mieux comprendre le mĂ©canisme de rĂ©section et le rĂŽle que PARP-1 y joue, nous avons identifiĂ© d'autres protĂ©ines qui interagissent avec PARP-1 et modulent ce processus. Pour ce faire, nous avons utilisĂ© des donnĂ©es sur les protĂ©ines de liaison au pADPr gĂ©nĂ©rĂ©es Ă  la fois dans notre laboratoire et celui de notre collaborateur Ted Dawson de Johns Hopkins. Les candidats sĂ©lectionnĂ©s Ă  partir de ces listes ont Ă©tĂ© criblĂ©s pour identifier une seule cible qui dĂ©montrerait un phĂ©notype similaire Ă  la perte de PARP-1. Deux cibles initiales ont Ă©tĂ© explorĂ©es et finalement une seule protĂ©ine Ă  doigt de zinc a Ă©tĂ© choisie comme cible principale. Nous devons relever la fonction de ce doigt de zinc en HR, dans l'espoir qu'il permettra de dĂ©couvrir davantage les mĂ©canismes de PARP-1 en rĂ©section. En rĂ©sumĂ©, cette thĂšse Ă©lucide le rĂŽle de PARP-1 dans la rĂ©section de l'ADN et identifie une protĂ©ine Ă  doigt de zinc non Ă©tudiĂ©e auparavant qui interagit avec PARP-1 et partage une fonction similaire Ă  PARP-1 dans la rĂ©section de l'ADN.The integrity of human genomic DNA is maintained by DNA repair systems that will protect cells from damage by environmental agents or spontaneous DNA lesions. Each cell can experience up to 10⁔ lesions daily, including DNA double-strand breaks (DSB)s. Poly(ADP-ribosyl)ation (PARylation) is one of the earliest molecular signalling events occurring at DNA DSBs. It is catalysed by poly(ADP-ribose) polymerases (PARPs) that are directly activated by those DNA lesions. Failure to generate pADPr in response to DNA damage by either chemical inhibition or absence of PARP-1 increases the cellular sensitivity to genotoxic stress, indicating that pADPr itself is a key DNA damage signalling molecule. Inhibition of the DNA damage signalling enzyme poly(ADP-ribose) polymerase-1 (PARP-1) is among the most promising new therapies in cancer. PARP inhibitors sensitize cancer cells to DNA damaging agents and efficiently kill BRCA1- and BRCA2-deficient breast, ovarian and pancreatic cancer cells, suggesting that cells deficient in DSB repair are exquisitely sensitive to PARP inhibition. Yet, the mechanisms underlying this synthetic lethality between DSB repair deficiency and PARP inhibition remain poorly defined. There is considerable debate about the mechanism through which PARP inhibition kills DNA repair-deficient cells, and the full benefit of PARP inhibitors in cancer therapy can only be achieved by a clear understanding of the DNA damage response (DDR) pathways to DSBs and how these are affected by PARP inhibitors. The overall aim of my PhD is to investigate the role of PARP-1 in DSB repair and identify interactors of PARP-1 which also play a role in this process. Eukaryotic cells repair DSBs by two major pathways, non-homologous end-joining (NHEJ) and homologous recombination (HR). HR is initiated by the binding of DSB by BRCA1 and the end resection of the DSB by MRE11 (and the associated NBS1, RAD50, CtIP, and EXO1) to generate single-stranded DNA, which is further processed by RAD51 and BRCA1-PALB2-BRCA2. A key question in our field regards which factors are critical for regulating the DSB pathway choice. HR is initiated from highly resected DSB ends, whereas in NHEJ, resection is prevented by key repair factors that include RIF1 and 53BP1. Using PARP-1-deficient cells, we have observed that two inhibitors of DNA resection and regulators of pathway choice, RIF1 and 53BP1, are strongly impaired in forming DNA damage-induced foci. This supports our hypothesis that PARP-1 participates in DSB repair by influencing DNA resection. In order to further understand the mechanism of resection and the role that PARP-1 plays in it we also aim to identify other proteins which interact with PARP-1 and modulate this process. To accomplish this, we made use of data on PAR binding proteins generated both in our lab and that of our collaborator Ted Dawson. The candidates selected from these lists were screened to identify a single target that would demonstrate a similar phenotype to PARP-1 loss. Two initial targets were further explored and finally a single zinc finger protein was selected as our primary target. We aim to characterize the function of this zinc finger in HR, in the hopes that it will further uncover the mechanisms of PARP-1 in resection. In summary this thesis elucidates the role of PARP-1 in DNA resection and identifies a previously unstudied zinc finger protein which interacts with PARP-1 and shares a similar function to PARP-1 in DNA resection

    The molecular mechanism of PARP1 activation and its downstream roles in ALC1-regulated transcription

    Get PDF

    Biochemical and Developmental Characterization of a SNF2-like ATPase Amplified in Liver Cancer 1 (ALC1)

    Get PDF
    Post-translational modifications play a key role in recruiting chromatin remodeling and modifying enzymes to specific regions of chromosomes to modulate chromatin structure. Alc1 (Amplified in Liver Cancer 1), a member of the SNF2 ATPase superfamily with a carboxy-terminal macrodomain, is encoded by an oncogene implicated in the pathogenesis of hepatocellular carcinoma. Using a variety of biochemical techniques we show that Alc1 interacts transiently with chromatin associated proteins, including histones and the poly-(ADP-ribose) polymerase Parp1. Alc1 ATPase and chromatin remodeling activities are strongly activated by Parp1 and its substrate NAD and require an intact macrodomain capable of binding poly-(ADP-ribose). Alc1 is rapidly recruited to nucleosomes in vitro and to chromatin in cells when Parp1catalyzes PAR synthesis. We propose that poly-(ADP-ribosyl)ation of chromatin associated Parp1 serves as a novel mechanism for targeting a SNF2 family remodeler to chromatin. Using zebrafish as a model organism, we aimed to study possible roles of ALC1 in early organismal development. We found through qPCR and whole mount in situ analysis, that ALC1 is expressed ubiquitously within the blastomere prior to gastrulation, with peak expression observed during the Dome stage, and later at 24hpf that ALC1 is expressed within the anterior central nervous system. The injection of embryos with morpholinos targeting ALC1 resulted in pleiotropic phenotypes that were partially rescued by co-injection of either human or zebrafish mRNA. These findings suggest that Alc1 and its associated enzymatic activities are most likely required for proper organismal development

    In vivo ADP-ribosylation of proteins in mouse L1210 cells.

    Get PDF

    Potential biological role of poly (ADP-ribose) polymerase (PARP) in male gametes

    Get PDF
    Maintaining the integrity of sperm DNA is vital to reproduction and male fertility. Sperm contain a number of molecules and pathways for the repair of base excision, base mismatches and DNA strand breaks. The presence of Poly (ADP-ribose) polymerase (PARP), a DNA repair enzyme, and its homologues has recently been shown in male germ cells, specifically during stage VII of spermatogenesis. High PARP expression has been reported in mature spermatozoa and in proven fertile men. Whenever there are strand breaks in sperm DNA due to oxidative stress, chromatin remodeling or cell death, PARP is activated. However, the cleavage of PARP by caspase-3 inactivates it and inhibits PARP's DNA-repairing abilities. Therefore, cleaved PARP (cPARP) may be considered a marker of apoptosis. The presence of higher levels of cPARP in sperm of infertile men adds a new proof for the correlation between apoptosis and male infertility. This review describes the possible biological significance of PARP in mammalian cells with the focus on male reproduction. The review elaborates on the role played by PARP during spermatogenesis, sperm maturation in ejaculated spermatozoa and the potential role of PARP as new marker of sperm damage. PARP could provide new strategies to preserve fertility in cancer patients subjected to genotoxic stresses and may be a key to better male reproductive health

    PARP-1 activation regulates the DNA damage response to DNA double-strand breaks

    Get PDF
    Les cassures double-brin de l'ADN, lorsque incorrectement rĂ©parĂ©es, peuvent avoir des consĂ©quences fatales telles que des dĂ©lĂ©tions et des rĂ©arrangements chromosomiques, favorisant la carcinogenĂšse. La poly(ADP-ribosyl)ation rĂ©alisĂ©e par la protĂ©ine poly(ADP-ribose) polymĂ©rase-1 (PARP-1) est l'une des premiĂšres modifications post-traductionnelles qui se produisent en rĂ©ponse aux dommages Ă  l'ADN. La PARP-1 utilise la nicotinamide pour gĂ©nĂ©rer un polymĂšre chargĂ© nĂ©gativement, nommĂ© poly(ADP-ribose) polymĂšre (PAR), lequel est attachĂ© en majoritĂ© Ă  la PARP-1 elle-mĂȘme ainsi qu'Ă  d'autres protĂ©ines cibles. Le PAR a rĂ©cemment Ă©tĂ© reconnu comme un signal de recrutement pour certaines protĂ©ines de rĂ©paration aux sites de dommages Ă  l'ADN, mais un dĂ©bat est en cours quant au rĂŽle prĂ©cis de la PARP-1 et du PAR dans la rĂ©ponse aux dommages de l'ADN. Au cours de mon projet de doctorat, nous avons pu confirmer que les protĂ©ines qui se retrouvent en complexe avec le PAR immĂ©diatement aprĂšs les dommages Ă  l'ADN sont principalement des facteurs de rĂ©paration. Étonnamment, les complexes protĂ©iques associĂ©s au PAR pendant la pĂ©riode de rĂ©cupĂ©ration suite aux dommages sont enrichis en facteurs de liaison Ă  l'ARN. Toutefois, la protĂ©ine liant l'ARN la plus abondante que nous avons dĂ©tectĂ©e dans l'interactome du PAR, soit NONO, ne suit pas cette derniĂšre cinĂ©tique puisqu'elle est fortement enrichie immĂ©diatement aprĂšs les dommages Ă  l'ADN. Notre Ă©tude subsĂ©quente de NONO dans la rĂ©ponse aux cassures double-brin de l'ADN a Ă©tonnamment rĂ©vĂ©lĂ© une implication directe de celle-ci par le mĂ©canismede rĂ©paration de jonction des extrĂ©mitĂ©s non-homologues. En plus, nous avons constatĂ© que NONO se lie fortement et spĂ©cifiquement au PAR via son motif 1 de la reconnaissance de l'ARN, soulignant la compĂ©tition entre les PAR et l'ARN pour le mĂȘme site de liaison. Fait intĂ©ressant, le recrutement in vivo de NONO aux sites de dommages de l'ADN dĂ©pend entiĂšrement du PAR et nĂ©cessite le motif 1 de la reconnaissance de l'ARN. En conclusion, nos rĂ©sultats Ă©tablissent NONO comme une nouvelle protĂ©ine impliquĂ©e dans la rĂ©ponse aux cassures double-brin de l'ADN et plus gĂ©nĂ©ralement dĂ©montrent un autre niveau de complexitĂ© supplĂ©mentaire dans l'interdĂ©pendance de la biologie de l'ARN et la rĂ©paration de l'ADN.DNA double-strand breaks are potentially lethal lesions, which if not repaired correctly, can have harmful consequences such as carcinogenesis promoted by chromosome deletions and rearrangements. Poly(ADP-ribosyl)ation carried out by poly(ADP-ribose) polymerase 1 (PARP-1) is one of the first posttranslational modifications occurring in response to DNA damage. In brief, PARP-1 uses nicotinamide to generate a negatively charged polymer called poly(ADP-ribose) polymer (PAR), that can be attached to acceptor proteins, which is to a large extent PARP-1 itself. PAR has recently been recognized as a recruitment signal for key DNA repair proteins to sites of DNA damage but the precise role of PARP-1 and its catalytic product PAR in the DNA damage response are still a matter of ongoing debate. Throughout my doctoral work, we confirmed that the proteins in complex with PAR promptly after DNA damage are mostly DNA repair proteins, whereas during the period of recovery from DNA damage, the PAR interactome is highly enriched with RNA processing factors. Interestingly, one of the most abundant RNA-binding proteins detected in the PAR interactome, namely NONO, did not follow these kinetics as it was highly enriched immediately after DNA damage in the DNA repair protein complexes centered on PAR. Our subsequent investigation of NONO in the DNA damage response to double-strand breaks strikingly revealed a direct implication for NONO in repair by nonhomologous end joining (NHEJ). Moreover, we found that NONO strongly and specifically binds to PAR through its RNA-recognition motif 1 (RRM1), highlighting competition between PAR and RNA for the same binding site. Remarkably, the in vivo recruitment of NONO to DNA damage sites completely depends on PAR and requires the RRM1 motif. In conclusion, our results establish NONO as a new protein implicated in the DNA damage response to double-strand break and in broader terms add another layer of complexity to the cross-talk between RNA-biology and DNA repair
    • 

    corecore