3 research outputs found

    Educational software tool for decoupling control in wind turbines applied to a lab鈥恠cale system

    Get PDF
    This paper presents an educational software tool, called wtControlGUI, whose main purpose is to show the applicability and performance of different decoupling control strategies in wind turbines. Nowadays wind turbines are a very important field in control engineering. Therefore, from an educational point of view, the tool also aims to improve the learning of multivariable control concepts applied on this control field. In addition, wtControlGUI allows for testing and control of a lab-scale system which emulates the dynamic response of a largescale wind turbine. The designed graphical user interface essentially allows simulation and experimental testing of decoupling networks and other multivariable methodologies, such as robust and decentralized control strategies. The tool is available for master degree students in control engineering. A survey was performed to evaluate the effectiveness of the proposed tool when used in educational related tasks

    Educational tool for the learning of thermal comfort control based on PMV-PPD indices

    Get PDF
    In this paper, an interactive educational tool designed for the learning of thermal comfort concepts is presented. Thermal comfort is one of the fundamental aspects of indoor environmental quality and energy savings in buildings. Comfort-based control and energy management constitute an important emergent sub-discipline of engineering studies. The developed tool allows for the definition of the thermal model of a house. Based on this model, thermal comfort is estimated through the predicted mean vote (PMV) and predicted percentage dissatisfied (PPD) indices, and energy consumption is also calculated. The tool can communicate through Modbus TCP/IP protocol, providing external connectivity and data collection from the different sensors available in a building management system (BMS). In this way, it is possible to calculate in real-time the aforementioned comfort indices and propose corrective control indications to maintain the indoor-air conditions inside the optimal comfort range. A simple control strategy that can be applied to conventional HVAC systems is also addressed. The tool is available for degree students in control engineering. A survey was performed to evaluate the effectiveness of the proposed tool

    Iterative Method for Tuning Multiloop PID Controllers Based on Single Loop Robustness Specifications in the Frequency Domain

    Get PDF
    Multiloop proportional-integral-derivative (PID) controllers are widely used for controlling multivariable processes due to their understandability, simplicity and other practical advantages. The main difficulty of the methodologies using this approach is the fact that the controllers of different loops interact each other. Thus, the knowledge of the controllers in the other loops is necessary for the evaluation of one loop. This work proposes an iterative design methodology of multiloop PID controllers for stable multivariable systems. The controllers in each step are tuned using single-input single-output (SISO) methods for the corresponding effective open loop process (EOP), which considers the interaction of the other loops closed with the controllers of the previous step. The methodology uses a frequency response matrix representation of the system to avoid process approximations in the case of elements with time delays or complicated EOPs. Consequently, different robustness margins on the frequency domain are proposed as specifications: phase margin, gain margin, phase and gain margin combination, sensitivity margin and linear margin. For each case, a PID tuning method is described and detailed for the iterative methodology. The proposals are exemplified with two simulations systems where the obtained performance is similar or better than that achieved by other authors
    corecore