2 research outputs found

    Edge-texture feature based image forgery detection with cross dataset evaluation

    Get PDF
    A digital image is a rich medium of information. The development of user-friendly image editing tools has given rise to the need for image forensics. The existing methods for the investigation of the authenticity of an image perform well on a limited set of images or certain datasets but do not generalize well across different datasets. The challenge of image forensics is to detect the traces of tampering which distorts the texture patterns. A method for image forensics is proposed, which employs Discriminative robust local binary patterns (DRLBP) for encoding tampering traces and a support vector machine (SVM) for decision making. In addition, to validate the generalization of the proposed method, a new dataset is developed that consists of historic images, which have been tampered with by professionals. Extensive experiments were conducted using the developed dataset as well as the public domain benchmark datasets; the results demonstrate the robustness and effectiveness of the proposed method for tamper detection and validate its cross-dataset generalization. Based on the experimental results, directions are suggested that can improve dataset collection as well as algorithm evaluation protocols. More broadly, discussion in the community is stimulated regarding the very important, but largely neglected, issue of the capability of image forgery detection algorithms to generalize to new test data

    AuSR2: Image watermarking technique for authentication and self-recovery with image texture preservation

    Get PDF
    This paper presents an image watermarking technique for authentication and self-recovery called AuSR2. The AuSR2 scheme partitions the cover image into 3 × 3 non-overlapping blocks. The watermark data is embedded into two Least Significant Bit (LSB), consisting of two authentication bits and 16 recovery bits for each block. The texture of each block is preserved in the recovery data. Thus, each tampered pixel can be recovered independently instead of using the average block. The recovery process may introduce the tamper coincidence problem, which can be solved using image inpainting. The AuSR2 implements the LSB shifting algorithm to increase the imperceptibility by 2.8%. The experimental results confirm that the AuSR2 can accurately detect the tampering area up to 100%. The AuSR2 can recover the tampered image with a PSNR value of 38.11 dB under a 10% tampering rate. The comparative analysis proves the superiority of the AuSR2 compared to the existing scheme
    corecore