59,278 research outputs found

    Explicit Edge Inconsistency Evaluation Model for Color-Guided Depth Map Enhancement

    Full text link
    © 2016 IEEE. Color-guided depth enhancement is used to refine depth maps according to the assumption that the depth edges and the color edges at the corresponding locations are consistent. In methods on such low-level vision tasks, the Markov random field (MRF), including its variants, is one of the major approaches that have dominated this area for several years. However, the assumption above is not always true. To tackle the problem, the state-of-the-art solutions are to adjust the weighting coefficient inside the smoothness term of the MRF model. These methods lack an explicit evaluation model to quantitatively measure the inconsistency between the depth edge map and the color edge map, so they cannot adaptively control the efforts of the guidance from the color image for depth enhancement, leading to various defects such as texture-copy artifacts and blurring depth edges. In this paper, we propose a quantitative measurement on such inconsistency and explicitly embed it into the smoothness term. The proposed method demonstrates promising experimental results compared with the benchmark and state-of-the-art methods on the Middlebury ToF-Mark, and NYU data sets

    Deep Bilateral Learning for Real-Time Image Enhancement

    Get PDF
    Performance is a critical challenge in mobile image processing. Given a reference imaging pipeline, or even human-adjusted pairs of images, we seek to reproduce the enhancements and enable real-time evaluation. For this, we introduce a new neural network architecture inspired by bilateral grid processing and local affine color transforms. Using pairs of input/output images, we train a convolutional neural network to predict the coefficients of a locally-affine model in bilateral space. Our architecture learns to make local, global, and content-dependent decisions to approximate the desired image transformation. At runtime, the neural network consumes a low-resolution version of the input image, produces a set of affine transformations in bilateral space, upsamples those transformations in an edge-preserving fashion using a new slicing node, and then applies those upsampled transformations to the full-resolution image. Our algorithm processes high-resolution images on a smartphone in milliseconds, provides a real-time viewfinder at 1080p resolution, and matches the quality of state-of-the-art approximation techniques on a large class of image operators. Unlike previous work, our model is trained off-line from data and therefore does not require access to the original operator at runtime. This allows our model to learn complex, scene-dependent transformations for which no reference implementation is available, such as the photographic edits of a human retoucher.Comment: 12 pages, 14 figures, Siggraph 201

    Guided Stereo Matching

    Full text link
    Stereo is a prominent technique to infer dense depth maps from images, and deep learning further pushed forward the state-of-the-art, making end-to-end architectures unrivaled when enough data is available for training. However, deep networks suffer from significant drops in accuracy when dealing with new environments. Therefore, in this paper, we introduce Guided Stereo Matching, a novel paradigm leveraging a small amount of sparse, yet reliable depth measurements retrieved from an external source enabling to ameliorate this weakness. The additional sparse cues required by our method can be obtained with any strategy (e.g., a LiDAR) and used to enhance features linked to corresponding disparity hypotheses. Our formulation is general and fully differentiable, thus enabling to exploit the additional sparse inputs in pre-trained deep stereo networks as well as for training a new instance from scratch. Extensive experiments on three standard datasets and two state-of-the-art deep architectures show that even with a small set of sparse input cues, i) the proposed paradigm enables significant improvements to pre-trained networks. Moreover, ii) training from scratch notably increases accuracy and robustness to domain shifts. Finally, iii) it is suited and effective even with traditional stereo algorithms such as SGM.Comment: CVPR 201
    corecore