441 research outputs found

    Approximating the Regular Graphic TSP in near linear time

    Get PDF
    We present a randomized approximation algorithm for computing traveling salesperson tours in undirected regular graphs. Given an nn-vertex, kk-regular graph, the algorithm computes a tour of length at most (1+7lnkO(1))n\left(1+\frac{7}{\ln k-O(1)}\right)n, with high probability, in O(nklogk)O(nk \log k) time. This improves upon a recent result by Vishnoi (\cite{Vishnoi12}, FOCS 2012) for the same problem, in terms of both approximation factor, and running time. The key ingredient of our algorithm is a technique that uses edge-coloring algorithms to sample a cycle cover with O(n/logk)O(n/\log k) cycles with high probability, in near linear time. Additionally, we also give a deterministic 32+O(1k)\frac{3}{2}+O\left(\frac{1}{\sqrt{k}}\right) factor approximation algorithm running in time O(nk)O(nk).Comment: 12 page

    Bounded degree graphs and hypergraphs with no full rainbow matchings

    Full text link
    Given a multi-hypergraph GG that is edge-colored into color classes E1,,EnE_1, \ldots, E_n, a full rainbow matching is a matching of GG that contains exactly one edge from each color class EiE_i. One way to guarantee the existence of a full rainbow matching is to have the size of each color class EiE_i be sufficiently large compared to the maximum degree of GG. In this paper, we apply a simple iterative method to construct edge-colored multi-hypergraphs with a given maximum degree, large color classes, and no full rainbow matchings. First, for every r1r \ge 1 and Δ2\Delta \ge 2, we construct edge-colored rr-uniform multi-hypergraphs with maximum degree Δ\Delta such that each color class has size EirΔ1|E_i| \ge r\Delta - 1 and there is no full rainbow matching, which demonstrates that a theorem of Aharoni, Berger, and Meshulam (2005) is best possible. Second, we construct properly edge-colored multigraphs with no full rainbow matchings which disprove conjectures of Delcourt and Postle (2022). Finally, we apply results on full rainbow matchings to list edge-colorings and prove that a color degree generalization of Galvin's theorem (1995) does not hold

    List covering of regular multigraphs

    Full text link
    A graph covering projection, also known as a locally bijective homomorphism, is a mapping between vertices and edges of two graphs which preserves incidencies and is a local bijection. This notion stems from topological graph theory, but has also found applications in combinatorics and theoretical computer science. It has been known that for every fixed simple regular graph HH of valency greater than 2, deciding if an input graph covers HH is NP-complete. In recent years, topological graph theory has developed into heavily relying on multiple edges, loops, and semi-edges, but only partial results on the complexity of covering multigraphs with semi-edges are known so far. In this paper we consider the list version of the problem, called \textsc{List-HH-Cover}, where the vertices and edges of the input graph come with lists of admissible targets. Our main result reads that the \textsc{List-HH-Cover} problem is NP-complete for every regular multigraph HH of valency greater than 2 which contains at least one semi-simple vertex (i.e., a vertex which is incident with no loops, with no multiple edges and with at most one semi-edge). Using this result we almost show the NP-co/polytime dichotomy for the computational complexity of \textsc{ List-HH-Cover} of cubic multigraphs, leaving just five open cases.Comment: Accepted to IWOCA 202

    Low-Memory Algorithms for Online and W-Streaming Edge Coloring

    Full text link
    For edge coloring, the online and the W-streaming models seem somewhat orthogonal: the former needs edges to be assigned colors immediately after insertion, typically without any space restrictions, while the latter limits memory to sublinear in the input size but allows an edge's color to be announced any time after its insertion. We aim for the best of both worlds by designing small-space online algorithms for edge-coloring. We study the problem under both (adversarial) edge arrivals and vertex arrivals. Our results significantly improve upon the memory used by prior online algorithms while achieving an O(1)O(1)-competitive ratio. In particular, for nn-node graphs with maximum vertex-degree Δ\Delta under edge arrivals, we obtain an online O(Δ)O(\Delta)-coloring in O~(nΔ)\tilde{O}(n\sqrt{\Delta}) space. This is also the first W-streaming edge-coloring algorithm for O(Δ)O(\Delta)-coloring in sublinear memory. All prior works either used linear memory or ω(Δ)\omega(\Delta) colors. We also achieve a smooth color-space tradeoff: for any t=O(Δ)t=O(\Delta), we get an O(Δ(logΔ)2t)O(\Delta (\log \Delta)^2 t)-coloring in O~(nΔ/t)\tilde{O}(n\sqrt{\Delta/t}) space, improving upon the state of the art that used O~(nΔ/t)\tilde{O}(n\Delta/t) space for the same number of colors. The improvements stem from extensive use of random permutations that enable us to avoid previously used colors. Most of our algorithms can be derandomized and extended to multigraphs, where edge coloring is known to be considerably harder than for simple graphs.Comment: 32 pages, 1 figur
    corecore