9,936 research outputs found

    ์ดˆ์  ์Šคํƒ์—์„œ 3D ๊นŠ์ด ์žฌ๊ตฌ์„ฑ ๋ฐ ๊นŠ์ด ๊ฐœ์„ 

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2021. 2. ์‹ ์˜๊ธธ.Three-dimensional (3D) depth recovery from two-dimensional images is a fundamental and challenging objective in computer vision, and is one of the most important prerequisites for many applications such as 3D measurement, robot location and navigation, self-driving, and so on. Depth-from-focus (DFF) is one of the important methods to reconstruct a 3D depth in the use of focus information. Reconstructing a 3D depth from texture-less regions is a typical issue associated with the conventional DFF. Further more, it is difficult for the conventional DFF reconstruction techniques to preserve depth edges and fine details while maintaining spatial consistency. In this dissertation, we address these problems and propose an DFF depth recovery framework which is robust over texture-less regions, and can reconstruct a depth image with clear edges and fine details. The depth recovery framework proposed in this dissertation is composed of two processes: depth reconstruction and depth refinement. To recovery an accurate 3D depth, We first formulate the depth reconstruction as a maximum a posterior (MAP) estimation problem with the inclusion of matting Laplacian prior. The nonlocal principle is adopted during the construction stage of the matting Laplacian matrix to preserve depth edges and fine details. Additionally, a depth variance based confidence measure with the combination of the reliability measure of focus measure is proposed to maintain the spatial smoothness, such that the smooth depth regions in initial depth could have high confidence value and the reconstructed depth could be more derived from the initial depth. As the nonlocal principle breaks the spatial consistency, the reconstructed depth image is spatially inconsistent. Meanwhile, it suffers from texture-copy artifacts. To smooth the noise and suppress the texture-copy artifacts introduced in the reconstructed depth image, we propose a closed-form edge-preserving depth refinement algorithm that formulates the depth refinement as a MAP estimation problem using Markov random fields (MRFs). With the incorporation of pre-estimated depth edges and mutual structure information into our energy function and the specially designed smoothness weight, the proposed refinement method can effectively suppress noise and texture-copy artifacts while preserving depth edges. Additionally, with the construction of undirected weighted graph representing the energy function, a closed-form solution is obtained by using the Laplacian matrix corresponding to the graph. The proposed framework presents a novel method of 3D depth recovery from a focal stack. The proposed algorithm shows the superiority in depth recovery over texture-less regions owing to the effective variance based confidence level computation and the matting Laplacian prior. Additionally, this proposed reconstruction method can obtain a depth image with clear edges and fine details due to the adoption of nonlocal principle in the construct]ion of matting Laplacian matrix. The proposed closed-form depth refinement approach shows that the ability in noise removal while preserving object structure with the usage of common edges. Additionally, it is able to effectively suppress texture-copy artifacts by utilizing mutual structure information. The proposed depth refinement provides a general idea for edge-preserving image smoothing, especially for depth related refinement such as stereo vision. Both quantitative and qualitative experimental results show the supremacy of the proposed method in terms of robustness in texture-less regions, accuracy, and ability to preserve object structure while maintaining spatial smoothness.Chapter 1 Introduction 1 1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Chapter 2 Related Works 9 2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Principle of depth-from-focus . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Focus measure operators . . . . . . . . . . . . . . . . . . . 12 2.3 Depth-from-focus reconstruction . . . . . . . . . . . . . . . . . . 14 2.4 Edge-preserving image denoising . . . . . . . . . . . . . . . . . . 23 Chapter 3 Depth-from-Focus Reconstruction using Nonlocal Matting Laplacian Prior 38 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2 Image matting and matting Laplacian . . . . . . . . . . . . . . . 40 3.3 Depth-from-focus . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4 Depth reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . 47 3.4.2 Likelihood model . . . . . . . . . . . . . . . . . . . . . . . 48 3.4.3 Nonlocal matting Laplacian prior model . . . . . . . . . . 50 3.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.5.2 Data configuration . . . . . . . . . . . . . . . . . . . . . . 55 3.5.3 Reconstruction results . . . . . . . . . . . . . . . . . . . . 56 3.5.4 Comparison between reconstruction using local and nonlocal matting Laplacian . . . . . . . . . . . . . . . . . . . 56 3.5.5 Spatial consistency analysis . . . . . . . . . . . . . . . . . 59 3.5.6 Parameter setting and analysis . . . . . . . . . . . . . . . 59 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Chapter 4 Closed-form MRF-based Depth Refinement 63 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.3 Closed-form solution . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.4 Edge preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.5 Texture-copy artifacts suppression . . . . . . . . . . . . . . . . . 73 4.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Chapter 5 Evaluation 82 5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.2 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.3 Evaluation on synthetic datasets . . . . . . . . . . . . . . . . . . 84 5.4 Evaluation on real scene datasets . . . . . . . . . . . . . . . . . . 89 5.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5.6 Computational performances . . . . . . . . . . . . . . . . . . . . 93 Chapter 6 Conclusion 96 Bibliography 99Docto

    Machine Learning And Image Processing For Noise Removal And Robust Edge Detection In The Presence Of Mixed Noise

    Get PDF
    The central goal of this dissertation is to design and model a smoothing filter based on the random single and mixed noise distribution that would attenuate the effect of noise while preserving edge details. Only then could robust, integrated and resilient edge detection methods be deployed to overcome the ubiquitous presence of random noise in images. Random noise effects are modeled as those that could emanate from impulse noise, Gaussian noise and speckle noise. In the first step, evaluation of methods is performed based on an exhaustive review on the different types of denoising methods which focus on impulse noise, Gaussian noise and their related denoising filters. These include spatial filters (linear, non-linear and a combination of them), transform domain filters, neural network-based filters, numerical-based filters, fuzzy based filters, morphological filters, statistical filters, and supervised learning-based filters. In the second step, switching adaptive median and fixed weighted mean filter (SAMFWMF) which is a combination of linear and non-linear filters, is introduced in order to detect and remove impulse noise. Then, a robust edge detection method is applied which relies on an integrated process including non-maximum suppression, maximum sequence, thresholding and morphological operations. The results are obtained on MRI and natural images. In the third step, a combination of transform domain-based filter which is a combination of dual tree โ€“ complex wavelet transform (DT-CWT) and total variation, is introduced in order to detect and remove Gaussian noise as well as mixed Gaussian and Speckle noise. Then, a robust edge detection is applied in order to track the true edges. The results are obtained on medical ultrasound and natural images. In the fourth step, a smoothing filter, which is a feed-forward convolutional network (CNN) is introduced to assume a deep architecture, and supported through a specific learning algorithm, l2 loss function minimization, a regularization method, and batch normalization all integrated in order to detect and remove impulse noise as well as mixed impulse and Gaussian noise. Then, a robust edge detection is applied in order to track the true edges. The results are obtained on natural images for both specific and non-specific noise-level

    Nonrigid reconstruction of 3D breast surfaces with a low-cost RGBD camera for surgical planning and aesthetic evaluation

    Get PDF
    Accounting for 26% of all new cancer cases worldwide, breast cancer remains the most common form of cancer in women. Although early breast cancer has a favourable long-term prognosis, roughly a third of patients suffer from a suboptimal aesthetic outcome despite breast conserving cancer treatment. Clinical-quality 3D modelling of the breast surface therefore assumes an increasingly important role in advancing treatment planning, prediction and evaluation of breast cosmesis. Yet, existing 3D torso scanners are expensive and either infrastructure-heavy or subject to motion artefacts. In this paper we employ a single consumer-grade RGBD camera with an ICP-based registration approach to jointly align all points from a sequence of depth images non-rigidly. Subtle body deformation due to postural sway and respiration is successfully mitigated leading to a higher geometric accuracy through regularised locally affine transformations. We present results from 6 clinical cases where our method compares well with the gold standard and outperforms a previous approach. We show that our method produces better reconstructions qualitatively by visual assessment and quantitatively by consistently obtaining lower landmark error scores and yielding more accurate breast volume estimates
    • โ€ฆ
    corecore