55,989 research outputs found

    Index theorems for quantum graphs

    Get PDF
    In geometric analysis, an index theorem relates the difference of the numbers of solutions of two differential equations to the topological structure of the manifold or bundle concerned, sometimes using the heat kernels of two higher-order differential operators as an intermediary. In this paper, the case of quantum graphs is addressed. A quantum graph is a graph considered as a (singular) one-dimensional variety and equipped with a second-order differential Hamiltonian H (a "Laplacian") with suitable conditions at vertices. For the case of scale-invariant vertex conditions (i.e., conditions that do not mix the values of functions and of their derivatives), the constant term of the heat-kernel expansion is shown to be proportional to the trace of the internal scattering matrix of the graph. This observation is placed into the index-theory context by factoring the Laplacian into two first-order operators, H =A*A, and relating the constant term to the index of A. An independent consideration provides an index formula for any differential operator on a finite quantum graph in terms of the vertex conditions. It is found also that the algebraic multiplicity of 0 as a root of the secular determinant of H is the sum of the nullities of A and A*.Comment: 19 pages, Institute of Physics LaTe

    Non-Weyl Resonance Asymptotics for Quantum Graphs

    Full text link
    We consider the resonances of a quantum graph G\mathcal G that consists of a compact part with one or more infinite leads attached to it. We discuss the leading term of the asymptotics of the number of resonances of G\mathcal G in a disc of a large radius. We call G\mathcal G a \emph{Weyl graph} if the coefficient in front of this leading term coincides with the volume of the compact part of G\mathcal G. We give an explicit topological criterion for a graph to be Weyl. In the final section we analyze a particular example in some detail to explain how the transition from the Weyl to the non-Weyl case occurs.Comment: 29 pages, 2 figure

    Quasi-isospectrality on quantum graphs

    Full text link
    Consider two quantum graphs with the standard Laplace operator and non-Robin type boundary conditions at all vertices. We show that if their eigenvalue-spectra agree everywhere aside from a sufficiently sparse set, then the eigenvalue-spectra and the length-spectra of the two quantum graphs are identical, with the possible exception of the multiplicity of the eigenvalue zero. Similarly if their length-spectra agree everywhere aside from a sufficiently sparse set, then the quantum graphs have the same eigenvalue-spectrum and length-spectrum, again with the possible exception of the eigenvalue zero.Comment: This article has now been published but unfortunately the published version contains an error in the treatment of the eigenvalue zero. The version here is the corrected versio

    Elliptic theory of differential edge operators, II: boundary value problems

    Full text link
    This is a continuation of the first author's development of the theory of elliptic differential operators with edge degeneracies. That first paper treated basic mapping theory, focusing on semi-Fredholm properties on weighted Sobolev and H\"older spaces and regularity in the form of asymptotic expansions of solutions. The present paper builds on this through the formulation of boundary conditions and the construction of parametrices for the associated boundary problems. As before, the emphasis is on the geometric microlocal structure of the Schwartz kernels of parametrices and generalized inverses.Comment: 45 pages, 3 figure

    The Berry-Keating operator on L^2(\rz_>, x) and on compact quantum graphs with general self-adjoint realizations

    Full text link
    The Berry-Keating operator H_{\mathrm{BK}}:= -\ui\hbar(x\frac{ \phantom{x}}{ x}+{1/2}) [M. V. Berry and J. P. Keating, SIAM Rev. 41 (1999) 236] governing the Schr\"odinger dynamics is discussed in the Hilbert space L^2(\rz_>, x) and on compact quantum graphs. It is proved that the spectrum of HBKH_{\mathrm{BK}} defined on L^2(\rz_>, x) is purely continuous and thus this quantization of HBKH_{\mathrm{BK}} cannot yield the hypothetical Hilbert-Polya operator possessing as eigenvalues the nontrivial zeros of the Riemann zeta function. A complete classification of all self-adjoint extensions of HBKH_{\mathrm{BK}} acting on compact quantum graphs is given together with the corresponding secular equation in form of a determinant whose zeros determine the discrete spectrum of HBKH_{\mathrm{BK}}. In addition, an exact trace formula and the Weyl asymptotics of the eigenvalue counting function are derived. Furthermore, we introduce the "squared" Berry-Keating operator HBK2:=−x22xx2−2xxx−1/4H_{\mathrm{BK}}^2:= -x^2\frac{ ^2\phantom{x}}{ x^2}-2x\frac{ \phantom{x}}{ x}-{1/4} which is a special case of the Black-Scholes operator used in financial theory of option pricing. Again, all self-adjoint extensions, the corresponding secular equation, the trace formula and the Weyl asymptotics are derived for HBK2H_{\mathrm{BK}}^2 on compact quantum graphs. While the spectra of both HBKH_{\mathrm{BK}} and HBK2H_{\mathrm{BK}}^2 on any compact quantum graph are discrete, their Weyl asymptotics demonstrate that neither HBKH_{\mathrm{BK}} nor HBK2H_{\mathrm{BK}}^2 can yield as eigenvalues the nontrivial Riemann zeros. Some simple examples are worked out in detail.Comment: 33p
    • …
    corecore