384 research outputs found

    Supporting UAVs with Edge Computing: A Review of Opportunities and Challenges

    Full text link
    Over the last years, Unmanned Aerial Vehicles (UAVs) have seen significant advancements in sensor capabilities and computational abilities, allowing for efficient autonomous navigation and visual tracking applications. However, the demand for computationally complex tasks has increased faster than advances in battery technology. This opens up possibilities for improvements using edge computing. In edge computing, edge servers can achieve lower latency responses compared to traditional cloud servers through strategic geographic deployments. Furthermore, these servers can maintain superior computational performance compared to UAVs, as they are not limited by battery constraints. Combining these technologies by aiding UAVs with edge servers, research finds measurable improvements in task completion speed, energy efficiency, and reliability across multiple applications and industries. This systematic literature review aims to analyze the current state of research and collect, select, and extract the key areas where UAV activities can be supported and improved through edge computing

    Envisioning the Future Role of 3D Wireless Networks in Preventing and Managing Disasters and Emergency Situations

    Full text link
    In an era marked by unprecedented climatic upheavals and evolving urban landscapes, the role of advanced communication networks in disaster prevention and management is becoming increasingly critical. This paper explores the transformative potential of 3D wireless networks, an innovative amalgamation of terrestrial, aerial, and satellite technologies, in enhancing disaster response mechanisms. We delve into a myriad of use cases, ranging from large facility evacuations to wildfire management, underscoring the versatility of these networks in ensuring timely communication, real-time situational awareness, and efficient resource allocation during crises. We also present an overview of cutting-edge prototypes, highlighting the practical feasibility and operational efficacy of 3D wireless networks in real-world scenarios. Simultaneously, we acknowledge the challenges posed by aspects such as cybersecurity, cross-border coordination, and physical layer technological hurdles, and propose future directions for research and development in this domain

    A Comprehensive Review of AI-enabled Unmanned Aerial Vehicle: Trends, Vision , and Challenges

    Full text link
    In recent years, the combination of artificial intelligence (AI) and unmanned aerial vehicles (UAVs) has brought about advancements in various areas. This comprehensive analysis explores the changing landscape of AI-powered UAVs and friendly computing in their applications. It covers emerging trends, futuristic visions, and the inherent challenges that come with this relationship. The study examines how AI plays a role in enabling navigation, detecting and tracking objects, monitoring wildlife, enhancing precision agriculture, facilitating rescue operations, conducting surveillance activities, and establishing communication among UAVs using environmentally conscious computing techniques. By delving into the interaction between AI and UAVs, this analysis highlights the potential for these technologies to revolutionise industries such as agriculture, surveillance practices, disaster management strategies, and more. While envisioning possibilities, it also takes a look at ethical considerations, safety concerns, regulatory frameworks to be established, and the responsible deployment of AI-enhanced UAV systems. By consolidating insights from research endeavours in this field, this review provides an understanding of the evolving landscape of AI-powered UAVs while setting the stage for further exploration in this transformative domain

    Sustainable Collaboration: Federated Learning for Environmentally Conscious Forest Fire Classification in Green Internet of Things (IoT)

    Get PDF
    Forests are an invaluable natural resource, playing a crucial role in the regulation of both local and global climate patterns. Additionally, they offer a plethora of benefits such as medicinal plants, food, and non-timber forest products. However, with the growing global population, the demand for forest resources has escalated, leading to a decline in their abundance. The reduction in forest density has detrimental impacts on global temperatures and raises the likelihood of forest fires. To address these challenges, this paper introduces a Federated Learning framework empowered by the Internet of Things (IoT). The proposed framework integrates with an Intelligent system, leveraging mounted cameras strategically positioned in highly vulnerable areas susceptible to forest fires. This integration enables the timely detection and monitoring of forest fire occurrences and plays its part in avoiding major catastrophes. The proposed framework incorporates the Federated Stochastic Gradient Descent (FedSGD) technique to aggregate the global model in the cloud. The dataset employed in this study comprises two classes: fire and non-fire images. This dataset is distributed among five nodes, allowing each node to independently train the model on their respective devices. Following the local training, the learned parameters are shared with the cloud for aggregation, ensuring a collective and comprehensive global model. The effectiveness of the proposed framework is assessed by comparing its performance metrics with the recent work. The proposed algorithm achieved an accuracy of 99.27 % and stands out by leveraging the concept of collaborative learning. This approach distributes the workload among nodes, relieving the server from excessive burden. Each node is empowered to obtain the best possible model for classification, even if it possesses limited data. This collaborative learning paradigm enhances the overall efficiency and effectiveness of the classification process, ensuring optimal results in scenarios where data availability may be constrained

    Internet of Things for Sustainable Community Development: Introduction and Overview

    Get PDF
    The two-third of the city-dwelling world population by 2050 poses numerous global challenges in the infrastructure and natural resource management domains (e.g., water and food scarcity, increasing global temperatures, and energy issues). The IoT with integrated sensing and communication capabilities has the strong potential for the robust, sustainable, and informed resource management in the urban and rural communities. In this chapter, the vital concepts of sustainable community development are discussed. The IoT and sustainability interactions are explained with emphasis on Sustainable Development Goals (SDGs) and communication technologies. Moreover, IoT opportunities and challenges are discussed in the context of sustainable community development

    TinySurveillance: A Low-power Event-based Surveillance Method for Unmanned Aerial Vehicles

    Get PDF
    Unmanned Aerial Vehicles (UAVs) have always been faced with power management challenges. Managing power consumption becomes critical, especially in surveillance applications where the longer flight time results in wider coverage and a cheaper solution. While most current studies focus on utilizing new models for improving event detection without considering the power constraints, our design's first priority is our platform's power efficiency. Implementing an algorithm on a portable device with minimal access to power supply sources requires special hardware and software considerations. An improved algorithm may need more powerful hardware, which can surge power consumption. Therefore, we aim to propose a method to be suitable for such devices with power consumption constraints. In this work, we propose an event-driven surveillance method with an efficient video transmission algorithm that reduces power consumption while preserving image quality. The surveillance will start automatically once the low-power AI-based onboard processor detects the desired event. The drone repeatedly solves a classification problem by employing a lightweight deep learning algorithm. When the UAV detects the defined event, a sample image is sent to the server for validation. Afterwards, if the server validates the drone decision, the drone, which can be a UAV, starts sending a colored image accompanied by a group of N grayscale images. Then, in the server, the grayscale images will be colorized using a convolution neural network trained by the colored images. By adopting this method, the sent data rate decreases and the server's computation load increases. The former part results in a drop in the UAV's power consumption, which is our aim. In this work, an application of wildfire detection and surveillance has been implemented to show the proof of concept of the TinySurveillance method. Using four videos of similar scenarios with different spatial and temporal information that a UAV may face, with various spatial and temporal characteristics, we show the effectiveness of our method. Our results show that the power consumption of the onboard processing unit in detection mode will be reduced by at least 4 times, reaching a detection accuracy of 85%, while in surveillance mode, we can decrease the data transmission rate by almost 66% while achieving a competent image quality with PSNR_Avg of 41.35 dB, PSNR of 30.94 dB, and output frame rate of 5.2. Also, the reproduced images show the outstanding performance of the algorithm by generating colorized images identical to the original scenes. There are main features that affect our method's power consumption and output quality, like the number of grayscale images, sent video bitrate, learning rate, and video characteristics that are discussed comprehensively

    Drones and Blockchain Integration to Manage Forest Fires in Remote Regions

    Get PDF
    Central management of fire stations and traditional optimization strategies are vulnerable to response time, a single point of failure, workload balancing, and cost problems. This is further intensified by the absence of modern communication systems and a comprehensive management framework for firefighting operations. These problems motivate the use of new technologies such as unmanned aerial vehicles (UAVs) with the capability to transport extinguishing materials and reach remote zones. Forest fire management in remote regions can also benefit from blockchain technology (BC) due to the facilitation of decentralization, tamper-proofing, immutability, and mission recording in distributed ledgers. This study proposed an integrated drone-based blockchain framework in which the network users or nodes include drones, drone controllers, firefighters, and managers. In this distributed network, all nodes can have access to data; therefore, the flow of data exchange is smooth and challenges on spatial distance are minimized. The research concluded with a discussion on constraints and opportunities in integrating blockchain with other new technologies to manage forest fires in remote regions
    corecore