202 research outputs found

    Business models for deployment and operation of femtocell networks; - Are new cooperation strategies needed for mobile operators?

    Get PDF
    In this paper we discuss different business models for deployment and operation of femtocell networks intended for provisioning of public mobile broad band access services. In these types of business cases the operators use femtocells in order to reduce investments in "more costly" macro networks since the traffic can be "offloaded" to "less costly" femtocell networks. This is in contrast to the many business cases presented in Femtoforum where femtocells mainly are discussed as a solution to improve indoor coverage for voice services in homes and small offices, usually for closed user groups The main question discussed in this paper is if "operators need to consider new forms of cooperation strategies in order to enable large scale deployment of femtocells for public access?" By looking into existing solutions for indoor wireless access services we claim that the answer is both "Yes" and "No". No, since many types of cooperation are already in place for indoor deployment. Yes, because mobile operators need to re-think the femtocell specific business models, from approaches based on singe operator networks to different forms of cooperation involving multi-operator solutions, e.g. roaming and network sharing. --

    Business Innovation Strategies to Reduce the Revenue Gap for Wireless Broadband Services

    Get PDF
    Mobile broadband is increasing rapidly both when it comes to traffic and number of subscriptions. The swift growth of the demand will require substantial capacity expansions. Operators are challenged by the fact that revenues from mobile broadband are limited, just a few per cent of APRU, and thus not compensating for declining voice revenues, creating a so called "revenue gap". Concurrently, mobile broadband dominates the traffic, set to grow strongly. In this paper we analyze the potential of different strategies for operators to reduce or bridge the revenue gap. The main options are to reduce network costs, to increase access prices and to exploit new revenue streams. The focus in the paper is on cost & capacity challenges and solutions in the network domain. Operators can cooperate and share sites and spectrum, which could be combined with off-loading heavy traffic to less costly local networks. In the network analysis we illustrate the cost impacts of different levels of demand, re-use of existing base station sites, sharing of base stations and spectrum and deployment of a denser network. A sensitivity analysis illustrates the impact on total revenues if access prices are increased, whether new types of services generate additional revenues, and if it fills the revenue gap. Our conclusion is that the different technical options to reduce the revenue gap can be linked to business strategies that include cooperation with both other operators as well as with non-telecom actors. Hence, innovations in the business domain enable technical solutions to be better or fully exploited.Wireless Internet access, data traffic, revenues, network costs, spectrum, deployment strategies, HSPA, LTE, operator cooperation, value added services, NFC, B2B2C.

    Mobile Communications Industry Scenarios and Strategic Implications for Network Equipment Vendors

    Get PDF
    Mobile infrastructure markets have changed dramatically during the past years. The industry is experiencing a shift from traditional large-scale, hardware-driven system roll-outs to software and services -driven business models. Also, the telecommunications and internet worlds are colliding in both mobile infrastructure and services domains requiring established network equipment vendors and mobile operators to transform and adapt to the new business environment. This paper utilizes Schoemaker's scenario planning process to reveal critical uncertain elements shaping the future of the industry. Four possible scenarios representing different value systems between industry's key stakeholders are created. After this, five strategic options with differing risk and cost factors for established network equipment vendors are discussed in order to aid firm's strategic planning process. --

    Economic value of Femtocell networks for mobile solution

    Get PDF
    The deployment of femtocell network in an indoor are used for the purpose of voice calling, data usage, mobile media, internet access and security service which has attracted the attention of economic values for telecom providers. However, femtocell works in the same full frequency band as well as macro cell. The mobile provider would prefer to choose femtocell rather than building macrocell site which leads to its quality of service and increase in profit; and thus, it increases savings compared to site building of macrocell. In this paper, the evaluations of the economic gain and impact factors of femtocell networks in the economy were investigated

    Revenue requirements for mobile operators with ultra-high mobile broadband data traffic growth.

    Get PDF
    Mobile broadband data access over cellular networks has been established as a major new service in just a few years. The mobile broadband penetration has risen from almost zero to between 10 and 15 per cent in Western European leading markets from 2007 to the end of 2009. More than 75% of network traffic was broadband data in 2009, and the data volumes are growing rapidly. But the revenue generation is the reverse as the average for operators in Europe in 2009 was around 77 per cent of service revenues from voice, 10 per cent from SMS and 13 per cent from other data. Voice and broadband data service are built on two quite different business models. Voice pricing is volume based. Revenue depends linearly on the number of voice minutes. Broadband data service on the other hand is mainly flat fee based even if different levels are being introduced as well as tiers. Revenue is decoupled from traffic and therefore also from operating costs and investment requirements. This is what we define as a revenue gap. Earnings as well as internal financing will suffer from increasing traffic per user unless the flat fee can be raised or changed to volume based, other revenue can be obtained and/or operating costs and investments can be reduced accordingly. Observable trends and common forecasts indicate strong growth of mobile broadband traffic as well as declining revenue from mobile voice in the next five year period. This outlook suggests a prospective revenue gap with weak top-line growth and expanding operating costs and investment requirements. This is not only a profitability and cash flow issue. It may also severely restrict the industry's revenue and profit growth potential if it is handled mainly by cost-cutting. In sections 2 - 4 we describe related work, our contribution, the specific research questions as well as the methodology and its problems. Section 5 is an overview of mobile operators' revenue, its sources and development till today. Section 6 presents trends, developments and published forecasts that may be relevant for the future. Section 7 contains our conclusions. --Mobile broadband,mobile operator revenues,revenue requirements,voice revenues,non-voice revenues

    Technical, financial and environmental evaluation of 4G long term evolution: advanced with femtocell base stations

    Get PDF
    Recent advances in mobile communication technology have allowed for considerable growth both in traffic and user numbers. However, in order to maintain acceptable quality of experience and service levels with increasing network capacity requirements, a mobile communications operator is challenged with high investment costs and high operating costs. Cost effectiveness and environmental sustainability are two major factors a mobile telecommunications operator must take into account in order to maintain its network planning techniques ready for the accelerated growth of traffic in future mobile networks. With the incoming LTE-Advanced system and with the increasing popularity of femtocells, it becomes necessary to evaluate and quantify the economic viability and sustainability of this new type of base station when used as a standalone deployment option, as well as when used in a two-tier network. Therefore, different cases were used with a deployment method based on capacity used with a varying non-uniform traffic distribution in order to assess the future resistance and flexibility of this proposed solution. A comparison was made between macro cell coverage only, full femtocell coverage and a two-tier joint solution. Our study has concluded that for low capacity demands, the best approach is a two-tier network with femtocells used for indoor backhaul. A joint solution also allows for the cost-effective resolution of indoor coverage issues. According to our future capacity requirements projected, it has been concluded that a full femtocell deployment, by far, the most economically viable option. A method for the quantification and suppression of carbon emissions due to energy consumption is also proposed, through which we studied and estimated the price for the achievement of a zero carbon emissions network.Os recentes avanços na tecnologia de comunicações móveis têm permitido um crescimento considerável da indústria, tanto em termos de tráfego como em número de clientes. No entanto, para conseguir manter uma qualidade de experiência aceitável e com elevada qualidade de serviço, um operador de comunicações móveis depara-se com elevados custos de investimento e operação. A eficácia em termos de custos e a pegada ambiental são dois factores que, entre outros, um operador de telecomunicações móveis deve ter em conta de modo a manter as suas técnicas de planeamento de rede preparadas para o acelerado crescimento do tráfego nas redes móveis do futuro. Com a chegada próxima do LTE-Advanced e com a crescente popularidade de femtocells, torna-se necessário avaliar e quantificar a viabilidade económica e o potencial de poupança de energia deste novo tipo de estação de base quando utilizado como uma opção de implantação autónoma, ou quando utilizado para suporte de uma rede de macro células. Dessa forma, foram dimensionados diferentes casos de implementação baseados nos requisitos de capacidade. Foi também aplicada uma distribuição de tráfego não-uniforme, a fim de avaliar a resistência ao futuro e a flexibilidade de aplicação desta solução proposta. Fez-se uma comparação entre uma implementação apenas com recurso a macro células, uma implementação feita completamente com recurso a femtocells e uma solução conjunta destes dois tipos de estação-base. O estudo concluiu que, para requisitos de baixa capacidade, a melhor implementação é uma rede de duas camadas, com femtocells utilizadas para o backhaul das ligações indoor. A solução conjunta permite ainda a resolução eficaz de problemas de cobertura no interior de edifícios. De acordo com a nossa projecção das necessidades futuras de capacidade concluiu-se que a implementação de uma rede apenas com recurso a femtocells é a melhor opção, do ponto de vista da capacidade, financeiro e ambiental. Também foi apresentada uma metodologia para quantificar a pegada ambiental devida ao consumo de energia, através da qual se estudou e estimou os custos associados à implementação de uma rede com pegada ambiental nula
    • …
    corecore