3 research outputs found

    Active power ouptut optimization for wind farms and thermal units by minimizing the operating cost and emissions

    Get PDF
    In recent years, many works have been done in order to discuss economic dispatch in which wind farms are installed in electrical grids in addition to conventional power plants. Nevertheless, the emissions caused by fossil fuels have not been considered in most of the studies done before. In fact, thermal power plants produce important quantities of emissions for instance, carbon dioxide (CO2) and sulphur dioxide (SO2) that are harmful to the environment. This paper presents an optimization algorithm with the objective to minimize the emission levels and the production cost. A comparison of the results obtained with different optimization methods leads us to opt for the grey wolf optimizer technique (GWO) to use for solving the proposed objective function. First, the method used to estimate the wind power of a plant is presented. Second, the economic dispatch models for wind and thermal generators are presented followed by the emission dispatch model for the thermal units.Then, the proposed objective function is formulated. Finally, the simulation results obtained by applying the GWO and other known optimization techniques are analysed and compared

    Economic Dispatch Using Modified Bat Algorithm

    No full text
    Economic dispatch is an important non-linear optimization task in power systems. In this process, the total power demand is distributed amongst the generating units such that each unit satisfies its generation limit constraints and the cost of power production is minimized. This paper presents an over view of three optimization algorithms namely real coded genetic algorithm, particle swarm optimization and a relatively new optimization technique called bat algorithm. This study will further propose modifications to the original bat. Simulations are carried out for two test cases. First is a six-generator power system with a simplified convex objective function. The second test case is a five-generator system with a non-convex objective function. Finally the results of the modified algorithm are compared with the results of genetic algorithm, particle swarm and the original bat algorithm. The results demonstrate the improvement in the Bat Algorithm
    corecore