11 research outputs found

    Weighted Least-Squares Finite Element Method for Cardiac Blood Flow Simulation with Echocardiographic Data

    Get PDF
    As both fluid flow measurement techniques and computer simulation methods continue to improve, there is a growing need for numerical simulation approaches that can assimilate experimental data into the simulation in a flexible and mathematically consistent manner. The problem of interest here is the simulation of blood flow in the left ventricle with the assimilation of experimental data provided by ultrasound imaging of microbubbles in the blood. The weighted least-squares finite element method is used because it allows data to be assimilated in a very flexible manner so that accurate measurements are more closely matched with the numerical solution than less accurate data. This approach is applied to two different test problems: a flexible flap that is displaced by a jet of fluid and blood flow in the porcine left ventricle. By adjusting how closely the simulation matches the experimental data, one can observe potential inaccuracies in the model because the simulation without experimental data differs significantly from the simulation with the data. Additionally, the assimilation of experimental data can help the simulation capture certain small effects that are present in the experiment, but not modeled directly in the simulation

    A velocity tracking approach for the Data Assimilation problem in blood flow simulations

    Get PDF
    preprintSeveral advances have been made in Data Assimilation techniques applied to blood flow modeling. Typically,idealized boundary conditions, only verified in straight parts of the vessel, are assumed. We present ageneral approach, based on a Dirichlet boundary control problem, that may potentially be used in differentparts of the arterial system. The relevance of this method appears when computational reconstructions ofthe 3D domains, prone to be considered sufficiently extended, are either not possible, or desirable, due tocomputational costs. Based on taking a fully unknown velocity profile as the control, the approach uses adiscretize then optimize methodology to solve the control problem numerically. The methodology is appliedto a realistic 3D geometry representing a brain aneurysm. The results show that this DA approach may bepreferable to a pressure control strategy, and that it can significantly improve the accuracy associated totypical solutions obtained using idealized velocity profilesinfo:eu-repo/semantics/submittedVersio

    An Efficient v-minimum Absolute Deviation Distribution Regression Machine

    Get PDF

    Proper orthogonal decomposition with interpolation-based real-time modelling of the heart

    Get PDF
    Several studies have been carried out recently with the aim of achieving cardiac modelling of the whole heart for a full heartbeat. However, within the context of the Galerkin method, those simulations require high computational demand, ranging from 16 - 200 CPUs, and long calculation time, lasting from 1 h - 50 h. To solve this problem, this research proposes to make use of a Reduced Order Method (ROM) called the Proper Orthogonal Decomposition with Interpolation method (PODI) to achieve real-time modelling with an adequate level of solution accuracy. The idea behind this method is to first construct a database of pre-computed full-scale solutions using the Element-free Galerkin method (EFG) and then project a selected subset of these solutions to a low dimensional space. Using the Moving Least Square method (MLS), an interpolation is carried out for the problem-at-hand, before the resulting coefficients are projected back to the original high dimensional solution space. The aim of this project is to tackle real-time modelling of a patient-specific heart for a full heartbeat in different stages, namely: modelling (i) the diastolic filling with variations of material properties, (ii) the isovolumetric contraction (IVC), ejection and isovolumetric relation (IVR) with arbitrary time evolutions, and (iii) variations in heart anatomy. For the diastolic filling, computations are carried out on a bi-ventricle model (BV) to investigate the performance and accuracy for varying the material parameters. The PODI calculations of the LV are completed within 14 s on a normal desktop machine with a relative L₂-error norm of 6x10⁻³. These calculations are about 2050 times faster than EFG, with each displacement step generated at a calculation frequency of 1074 Hz. An error sensitivity analysis is consequently carried out to find the most sensitive parameter and optimum dataset to be selected for the PODI calculation. In the second phase of the research, a so-called "time standardisation scheme" is adopted to model a full heartbeat cycle. This is due to the simulation of the IVC, ejection, and IVR phases being carried out using a displacement-driven calculation method which does not use uniform simulation steps across datasets. Generated results are accurate, with the PODI calculations being 2200 faster than EFG. The PODI method is, in the third phase of this work, extended to deal with arbitrary heart meshes by developing a method called "Degrees of freedom standardisation" (DOFS). DOFS consists of using a template mesh over which all dataset result fields are projected. Once the result fields are standardised, they are consequently used for the PODI calculation, before the PODI solution is projected back to the mesh of the problem-at-hand. The first template mesh to be considered is a cube mesh. However, it is found to produce results with high errors and non-physical behaviour. The second template mesh used is a heart template. In this case, a preprocessing step is required where a non-rigid transformation based on the coherent point drift method is used to transform all dataset hearts onto the heart template. The heart template approach generated a PODI solution of higher accuracy at a relatively low computational time. Following these encouraging results, a final investigation is carried out where the PODI method is coupled with a computationally expensive gradient-based optimisation method called the Levenberg- Marquardt (PODI-LVM) method. It is then compared against the full-scale simulation one where the EFG is used with the Levenberg-Marquardt method (EFG-LVM). In this case, the PODI-LVM simulations are 1025 times faster than the EFG-LVM, while its error is less than 1%. It is also observed that since the PODI database is built using EFG simulations, the PODI-LVM behaves similarly to the EFG-LVM one

    Proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress

    Get PDF
    Published proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress, hosted by York University, 27-30 May 2018

    In-Vitro and In-Silico Investigations of Alternative Surgical Techniques for Single Ventricular Disease

    Get PDF
    Single ventricle (SV) anomalies account for one-fourth of all cases of congenital Heart disease. The conventional second and third stage i.e. Comprehensive stage II and Fontan procedure of the existing three-staged surgical approach serving as a palliative treatment for this anomaly, entails multiple complications and achieves a survival rate of 50%. Hence, to reduce the morbidity and mortality rate associated with the second and third stages of the existing palliative procedure, the novel alternative techniques called “Hybrid Comprehensive Stage II” (HCSII), and a “Self-powered Fontan circulation” have been proposed. The goal of this research is to conduct in-vitro investigations to validate computational and clinical findings on these proposed novel surgical techniques. The research involves the development of a benchtop study of HCSII and self-powered Fontan circulation

    Aortic dissection: simulation tools for disease management and understanding

    Get PDF
    Aortic dissection is a severe cardiovascular pathology in which a tear in the intimal layer of the aortic wall allows blood to flow between the vessel wall layers, forming a 'false lumen'. In type-B aortic dissections, those involving only the descending aorta, the decision to medically manage or surgically intervene is not clear and is highly dependent on the patient. In addition to clinical imaging data, clinicians would benefit greatly from additional physiological data to inform their decision-making process. Computational fluid dynamics methods show promise for providing data on haemodynamic parameters in cardiovascular diseases, which cannot otherwise be predicted or safely measured. The assumptions made in the development of such models have a considerable impact on the accuracy of the results, and thus require careful investigation. Application of appropriate boundary conditions is a challenging but critical component of such models. In the present study, imaging data and invasive pressure measurements from a patient with a type-B aortic dissection were used to assist numerical modelling of the haemodynamics in a dissected aorta. A technique for tuning parameters for coupled Windkessel models was developed and evaluated. Two virtual treatments were modelled and analysed using the developed dynamic boundary conditions. Finally, the influence of wall motion was considered, of which the intimal flap that separates the false lumen from the true lumen, is of particular interest. The present results indicate that dynamic boundary conditions are necessary in order to achieve physiologically meaningful flows and pressures at the boundaries, and hence within the dissected aorta. Additionally, wall motion is of particular importance in the closed regions of the false lumen, wherein rigid wall simulations fail to capture the motion of the fluid due to the elasticity of the vessel wall and intimal flap
    corecore