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ABSTRACT Support Vector Regression (SVR) and its variants are widely used regression algorithms, and 

they have demonstrated high generalization ability. This research proposes a new SVR-based regressor: 𝑣-

minimum absolute deviation distribution regression (𝑣-MADR) machine. Instead of merely minimizing 

structural risk, as with 𝑣-SVR, 𝑣-MADR aims to achieve better generalization performance by minimizing 

both the absolute regression deviation mean and the absolute regression deviation variance, which takes into 

account the positive and negative values of the regression deviation of sample points. For optimization, we 

propose a dual coordinate descent (DCD) algorithm for small sample problems, and we also propose an 

averaged stochastic gradient descent (ASGD) algorithm for large-scale problems. Furthermore, we study the 

statistical property of 𝑣-MADR that leads to a bound on the expectation of error. The experimental results on 

both artificial and real datasets indicate that our 𝑣-MADR has significant improvement in generalization 

performance with less training time compared to the widely used 𝑣-SVR, LS-SVR, 𝜀-TSVR, and linear 𝜀-

SVR. Finally, we open source the code of 𝑣-MADR at https://github.com/AsunaYY/v-MADR for wider 

dissemination. 

INDEX TERMS 𝑣-Support vector regression, absolute regression deviation mean, absolute regression 

deviation variance, dual coordinate descent algorithm.

I. INTRODUCTION 

Support vector regression (SVR) [1-3] has been widely used 

in machine learning, since it can achieve better structural risk 

minimization. SVR realizes linear regression mainly by 

constructing linear decision functions in high dimensional 

space. Compared with other regression methods, such as least 

square regression [4], Neural Networks (NN) regression [5], 

logistic regression [6], and ridge regression [7], SVR has 

better generalization ability for regression problems [8-10]. In 

recent years, there have been many studies about SVR-based 

algorithms. Several SVR approaches have been developed, 

such as 𝜀 -support vector regression ( 𝜀 -SVR) [1, 11], 𝑣 -

support vector regression (𝑣 -SVR) [12], and least square 

support vector regression (LS-SVR) [13, 14]. The basic idea 

of these methods is to find the decision function by 

maximizing the boundaries of two parallel hyperplanes. 

Different from 𝜀-SVR, 𝑣-SVR introduces another parameter, 

𝑣 , to control the number of support vectors and adjust the 

parameter 𝜀  automatically. The parameter 𝑣  has a certain 

range of values, that is, (0,1]. When solving the quadratic 

specification problem (QPP), 𝑣-SVR reduces the number of 

computational parameters by half, which greatly reduces the 

computational complexity. Besides, some researchers have 

proposed the non-parallel planar regressors, such as twin 

support vector regression (TSVR) [15], 𝜀-twin support vector 

regression (𝜀-TSVR) [16], parametric-insensitive nonparallel 

support vector regression (PINSVR) [17], lagrangian support 

vector regression [18], and lagrangian twin support vector 
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regression (LTSVR) [19]. These algorithms demonstrate good 

ability to capture data structure and boundary information. 

Support vector (SV) theory indicates that maximizing the 

minimum margin is not the only way to construct the 

separating hyperplane for SVM. Zhang and Zhou [20-23]  

proposed the large margin distribution machine (LDM), which 

was designed to maximize the margin mean and minimize the 

margin variance simultaneously. Gao and Zhou [23] proved 

that the margin distribution including the margin mean and the 

margin variance was crucial for generalization compared to a 

single margin, and optimizing the margin distribution can also 

naturally accommodate class imbalance and unequal 

misclassification costs [21]. Inspired by the idea of LDM, Liu 

et al. proposed a minimum deviation distribution regression 

(MDR) [24], which introduced the statistics of regression 

deviation into 𝜀-SVR. More specifically, MDR minimizes the 

regression deviation mean and the regression deviation 

variance while optimizing the minimum margin. In addition, 

Reshma and Pritam were also inspired by the idea of LDM, 

and they proposed a large-margin distribution machine-based 

regression model (LDMR) and a new loss function [25, 26]. 

However, the definition of the deviation mean in MDR is not 

very appropriate for positive and negative samples, and the 

speed of 𝜀 -SVR strategy that MDR used can be further 

improved.  

Considering the above advances in SVR, in this research, 

we introduce the statistical information into 𝑣 -SVR and 

propose an 𝑣 -minimum absolute deviation distribution 

regression (𝑣-MADR). We give the definition of regression 

deviation mean which takes into account both the positive and 

negative values of the regression deviation of sample points. 

Inspired by recent theoretical results [20-24], 𝑣 -MADR 

simultaneously minimizes the absolute regression deviation 

mean and the absolute regression deviation variance based on 

the 𝑣 -SVR strategy, thereby greatly improving the 

generalization performance [21, 23]. To solve the optimization 

problem, we propose a dual coordinate descent (DCD) 

algorithm for small sample problems, and we also propose an 

averaged stochastic gradient descent (ASGD) algorithm for 

large-scale problems. Furthermore, the boundary on error 

expectation of 𝑣-MADR is studied. The performance of 𝑣-

MADR is assessed on both artificial and real datasets in 

comparison with other typical regression algorithms, such as 

𝑣-SVR, LS-SVR, 𝜀-TSVR, and linear 𝜀-SVR. According to 

previous research, SVR-based algorithms show better 

generalization ability for regression problems [8-10]. In 

conclusion, our experimental results demonstrate that the 

proposed 𝑣-MADR can lead to better performance than other 

algorithms for regression problems. The main contributions of 

this paper are as follows: 

1) We propose a new regression algorithm that minimizes 

both the absolute regression deviation mean and the 

absolute regression deviation variance, and this new 

algorithm takes into account the positive and negative 

values of the regression deviation of sample points. 

2) We propose two optimization algorithms, i.e., the dual 

coordinate descent (DCD) algorithm for small samples 

problems and the averaged stochastic gradient descent 

(ASGD) algorithm for large-scale problems. 

3) We theoretically prove the upper bound on the 

generalization error of 𝑣 -MADR and analyze the 

computational complexity of our optimization 

algorithms. 

As SVR-based algorithms are widely used for regression 

problems, 𝑣-MADR has great application potential. 

The rest of this paper is organized as follows: Section 2 

introduces the notations used in this paper and presents a brief 

review of SVR as well as the recent progress in SV theory. 

Section 3 introduces the proposed 𝑣 -MADR, including the 

kernel and the bound on the expectation of error. Experimental 

results are reported in Section 4, and finally, the conclusions 

are drawn in Section 5. 

II. BACKGROUND 

Suppose  𝑫 = {(𝒙1, 𝑦1), (𝒙2, 𝑦2), … , (𝒙𝑛, 𝑦𝑛)}  is a training 

set of 𝑛 samples, where 𝒙𝑖 ∈ 𝝌 is the input sample in the form 

of 𝑑 -dimensional vectors and 𝑦𝑖 ∈ 𝑅  is the corresponding 

target value. The objective function is 𝑓(𝒙) = 𝒘𝑇𝜙(𝒙) + 𝑏, 

where 𝒘 ∈ 𝑅𝑚  is the weight vector, 𝑏 ∈ 𝑅 is the bias term, 

and 𝜙(𝒙) is the mapping function induced by a kernel 𝜅, i.e., 

𝜅(𝒙𝑖 , 𝒙𝑗) = 𝜙(𝒙𝑖) ⋅ 𝜙(𝒙𝑗). To reduce the complexity brought 

by 𝑏, we enlarge the dimension of 𝒘 and 𝜙(𝒙𝑖) as in [27], i.e., 

𝒘 ← [𝒘, 𝑏]𝑇 , 𝜙(𝒙𝑖) ← [𝜙(𝒙𝑖), 1] . Thus, the function 

𝑓(𝒙) = 𝒘𝑇𝜙(𝒙) + 𝑏 becomes the following form: 

𝑓(𝒙) = 𝒘𝑇𝜙(𝒙). 
In what follows, we only consider problems in the form of 

the above function. 

Formally, we denote 𝑿 as the matrix whose 𝑖-th column is 

𝜙(𝒙𝑖), i.e., 𝑿 = [𝜙(𝒙1), … , 𝜙(𝒙𝑛)], and 𝒚 = [𝑦1, … , 𝑦𝑛]
𝑇  is 

a column vector. 

A. THE SVR ALGORITHMS  

There are two traditional methods for solving support vector 

regression (SVR) algorithms, namely 𝜀-SVR [1, 11] and 𝑣-

SVR [12]. In order to find the best fitting surface, 𝜀 -SVR 

maximizes the minimum margin containing the data in the so-

called 𝜀-tube, in which the distances of the data to the fitting 

hyperplane are not larger than 𝜀. Therefore, 𝜀-SVR with soft-

margin can be expressed as follows: 

𝑚𝑖𝑛
𝒘,𝝃,𝝃∗

1

2
𝒘𝑇𝒘+ 𝐶(𝒆𝑇𝝃 + 𝒆𝑇𝝃∗) 

         𝑠. 𝑡. 𝒚 − 𝑿𝑇𝒘 ≤ 𝜀𝒆 + 𝝃,   

              𝑿𝑇𝒘− 𝒚 ≤ 𝜀𝒆 + 𝝃∗,   

     𝝃, 𝝃∗ ≥ 𝟎, 

where parameter 𝐶  is used for the tradeoff between the 

flatness of 𝑓(𝒙) and the tolerance of the deviation larger than 

𝜀 ; 𝝃 = [𝜉1, 𝜉2, … , 𝜉𝑛]  and 𝝃∗ = [𝜉1
∗, 𝜉2

∗, … , 𝜉𝑛
∗]  are the slack 

variables measuring the distances of the training samples 
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outside the 𝜀 -tube from the 𝜀 -tube itself as soft-margin; 𝒆 

stands for the all-one vector of appropriate dimensions. 

The dual problem of 𝜀-SVR is formulated as 

𝑚𝑖𝑛
𝜶,𝜶∗

1

2
(𝜶 − 𝜶∗)𝑇𝑸(𝜶 − 𝜶∗) + 𝜀(𝜶 + 𝜶∗) + 𝒚𝑇(𝜶 − 𝜶∗) 

𝑠. 𝑡. e𝑇(𝜶 − 𝜶∗) = 0,  0 ≤ 𝛼𝑖 , 𝛼𝑖
∗ ≤ 𝐶,  𝑖 = 1,2, … , 𝑛,      (1) 

where 𝜶  and 𝜶∗  are the Lagrange multipliers;
 
𝑄𝑖𝑗 =

𝜅(𝒙𝑖 , 𝒙𝑗) = 𝜙(𝒙𝑖)
𝑇𝜙(𝒙𝑗). 

In order to facilitate the calculation, Formula (1) can be 

transformed as follows: 

𝑚𝑖𝑛
𝜶,𝜶∗

1

2
𝜶̃𝑇 [

  Q    − Q 

−Q        Q 
] 𝜶̃ + [

𝜀𝒆 + 𝒚
𝜀𝒆 − 𝒚

]
𝑇

𝜶̃                            (2) 

𝑠. 𝑡. [
𝒆
−𝒆
]
𝑇

𝜶̃ = 0,  0 ≤ 𝛼̃𝑖 ≤ 𝐶,  𝑖 = 1,2, … ,2𝑛,  

where 𝛂̃ = [𝛂𝑇 , 𝛂∗𝑇]𝑇. 

𝑣 -SVR [12] is another commonly used algorithm for 

solving SVR. Compared with 𝜀 -SVR, 𝑣 -SVR uses a new 

parameter 𝑣 ∈ (0,1] to control the number of support vectors 

and training errors and adjust parameter 𝜀  automatically. 

According to Gu et al., the objective function 𝑓(𝒙) in 𝑣-SVR 

is represented by the following constrained minimization 

problem with soft-margin [28-30]: 

𝑚𝑖𝑛
𝒘,𝜀,𝝃,𝝃∗

1

2
𝒘𝑇𝒘 + 𝐶 (𝑣𝜀 +

1

𝑛
(𝒆𝑇𝝃 + 𝒆𝑇𝝃∗)) 

                   𝑠. 𝑡. 𝒚 − 𝑿𝑇𝒘 ≤ 𝜀𝒆 + 𝝃,    
                        𝑿𝑇𝒘− 𝒚 ≤ 𝜀𝒆 + 𝝃∗, 
                        𝝃, 𝝃∗ ≥ 𝟎,  𝜀𝒆 ≥ 𝟎. 

The dual problem of 𝑣-SVR is 

𝑚𝑖𝑛
𝜶,𝜶∗

1

2
(𝜶 − 𝜶∗)𝑇𝑸(𝜶 − 𝜶∗) + 𝒚𝑇(𝜶 − 𝜶∗) 

𝑠. 𝑡. e𝑇(𝜶 − 𝜶∗) = 0,  e𝑇(𝜶 + 𝜶∗) ≤ 𝐶𝑣,  

0 ≤ 𝛼𝑖 , 𝛼𝑖
∗ ≤

𝐶

𝑛
,  𝑖 = 1,2, … , 𝑛. 

According to Chang et al. and Crisp et al., the inequality 

eT(𝛂 + 𝛂∗) ≤ 𝐶𝑣 in 𝑣-SVR can be replaced by the equality 

form of eT(𝛂 + 𝛂∗) = 𝐶𝑣 with the constraint 0 < 𝑣 ≤ 1 [11, 

31], so we have 

              𝑚𝑖𝑛
𝜶,𝜶∗

1

2
(𝜶 − 𝜶∗)𝑇𝑸(𝜶 − 𝜶∗) + 𝒚𝑇(𝜶 − 𝜶∗)        (3) 

𝑠. 𝑡. e𝑇(𝜶 − 𝜶∗) = 0,  e𝑇(𝜶 + 𝜶∗) = 𝐶𝑣,   

                     0 ≤ 𝛼𝑖 , 𝛼𝑖
∗ ≤

𝐶

𝑛
,  𝑖 = 1,2, … , 𝑛.                

We substitute the equation 𝜶∗ = 𝐶𝑣𝒆 − 𝜶 into Formula (3), 

and Formula (3) can be written as follows: 

𝑚𝑖𝑛
𝜶

1

2
(2𝜶 − 𝐶𝑣𝒆)𝑇𝑸(2𝜶 − 𝐶𝑣𝒆) + 𝒚𝑇(2𝜶 − 𝐶𝑣𝒆)        (4) 

𝑠. 𝑡. e𝑇(2𝜶 − 𝐶𝑣𝒆) = 0, 

0 ≤ 𝛼𝑖 ≤
𝐶

𝑛
,  𝑖 = 1,2, … , 𝑛. 

As one can see from Formula (2) and (4), by substituting the 

equation 𝜶∗ = 𝐶𝑣𝒆 − 𝜶 into the dual problem, the number of 

computational parameters of the 𝑣-SVR has been reduced by 

half compared to 𝜀 -SVR when solving the QPP. The 

difference in both time complexity and spatial complexity 

between 𝜀-SVR and 𝑣-SVR can be expressed as follows: 

𝑂(𝜀 − SVR)

𝑂(𝑣 − SVR)
= 𝑂 (

Formula(2)

Formula(4)
) = 𝑂 (

2𝑛 ∗ 2𝑛

𝑛 ∗ 𝑛
) = 4. 

B. RECENT PROGRESS IN SV THEORY  

Recent SV theory indicates that maximizing the minimum 

margin is not the only way to construct the separating 

hyperplane for SVR, because it does not necessarily lead to 

better generalization performance [20]. There may exist the 

so-called data piling problem in SVR [32], that is, the 

separating hyperplane produced by SVR tends to maximize 

data piling, which makes the data pile together when they are 

projected onto the hyperplane. If the distribution of the 

boundary data is different from that of the internal data, the 

hyperplane constructed by SVR will be inconsistent with the 

actual data distribution, which reduces the performance of 

SVR.  

Fortunately, Gao and Zhou have demonstrated that 

marginal distribution was critical to the generalization 

performance [23]. By using the margin mean and the margin 

variance, the model is robust to different distributions of 

boundary data and noise. Inspired by the above research, 

MDR [24] introduced the statistics of deviation into 𝜀-SVR 

and this allows more data to have impact on the construction 

of the hyperplane. 

In MDR, the regression deviation of sample (𝒙𝑖 , 𝑦𝑖)  is 

formulated as 

                   𝛾𝑖 = 𝑦𝑖 − 𝑓(𝒙𝑖), ∀𝑖 = 1,… , 𝑛.                        (5) 

So, the regression deviation mean is 

𝛾̄ =
1

𝑛
∑𝛾𝑖

𝑛

𝑖=1

=
1

𝑛
∑(𝑦𝑖 − 𝑓(𝒙𝑖))

𝑛

𝑖=1

=
1

𝑛
𝒆𝑇(𝒚 − 𝑿𝑇𝒘), 

and the regression deviation variance is defined as 

𝛾2 = (
1

𝑛
√∑∑[𝑦𝑖 − 𝑓(𝒙𝑖) − 𝑦𝑗 + 𝑓(𝒙𝑗)]

2
𝑛

𝑗=1

𝑛

𝑖=1

)

2

 

     =
1

𝑛2
{2[𝒘𝑇𝑿(𝑛𝑰 − 𝒆𝒆𝑇)𝑿𝑇𝒘− 2𝒚𝑇(𝑛𝑰 − 𝒆𝒆𝑇)𝑿𝑇𝒘

+ 𝒚𝑇(𝑛𝑰 − 𝒆𝒆𝑇)𝒚]}. 

MDR minimizes the regression deviation mean and the 

regression deviation variance simultaneously, so we have the 

following primal problem of soft-margin MDR: 

http://ss.zhizhen.com/s?sw=author%28Crisp%29
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           𝑚𝑖𝑛
𝒘,𝝃,𝝃∗

1

2
𝒘𝑇𝒘+ 𝜆1𝛾

2 + 𝜆2𝛾̄
2 + 𝐶(𝒆𝑇𝝃 + 𝒆𝑇𝝃∗) 

          𝑠. 𝑡. 𝒚 − 𝑿𝑇𝒘 ≤ 𝜀𝒆 + 𝝃, 
                𝒘 − 𝒚 ≤ 𝜀𝒆 + 𝝃∗, 
               𝝃, 𝝃∗ ≥ 𝟎, 

where 𝜆1  and 𝜆2  are the parameters for trading-off the 

regression deviation variance, the regression deviation mean 

and the model complexity. 

Here, we can see from Equation (5) that the regression 

deviation, 𝛾𝑖, is positive when the sample (𝒙𝑖 , 𝑦𝑖) lies above 

the regressor and negative when the sample (𝒙𝑖 , 𝑦𝑖) lies under 

the regressor. But in fact, for regression, the regression 

deviation of the sample (𝒙𝑖 , 𝑦𝑖) is the distance between the 

actual value and the estimated one, that is, 𝛾𝑖 = |𝑦𝑖 −
𝑓(𝒙𝑖)|, ∀𝑖 = 1,… , 𝑛.  Therefore, the definition of the 

deviation mean in MDR here is not very appropriate. 

On the other hand, when solving QPP, MDR uses the 𝜀-

SVR strategy, and it needs to calculate 2𝑛 (𝑛 is the number of 

training samples) parameters. Calculating a large number of 

parameters will increase the computational complexity and 

reduce the speed of the algorithm. Considering this, in the 

remainder of this paper, we will introduce our latest advances 

in SV theory and address the limitations of 𝜀-SVR strategy. 

III. 𝒗-MININUM ABSOLUTE DEVIATION DISTRIBUTION 
REGRESSION 

In this section, we first formulate the absolute deviation 

distribution which takes into account the positive and negative 

values of the regression deviation of samples. Then we give 

the optimization algorithms and the theoretical proof. 

A.  FORMULATION OF 𝒗-MADR 

The two most straightforward statistics for characterizing the 

absolute deviation distribution are the mean and the variance 

of absolute deviation. In regression problems, the absolute 

regression deviation of sample (𝒙𝑖 , 𝑦𝑖) is formulated as  

                   𝜑𝑖 = |𝑦𝑖 − 𝑓(𝒙𝑖)|, ∀𝑖 = 1,… , 𝑛.                     (6) 

𝜑𝑖  is actually the distance between the actual value of the 

sample (𝒙𝑖 , 𝑦𝑖)  and the estimated one. According to the 

definition in Equation (6), we give the definitions of statistics 

of absolute deviation in regression. 

Definition 1. Absolute regression deviation mean is defined 

as follows: 

               𝜑̄ =
1

𝑛
∑𝜑𝑖

2

𝑛

𝑖=1

=
1

𝑛
∑|𝑦𝑖 − 𝑓(𝒙𝑖)|

2

𝑛

𝑖=1

 

                  =
1

𝑛
(𝒘𝑇𝑿𝑿𝑇𝒘 − 2𝒚𝑇𝑿𝑇𝒘+ 𝒚𝑇𝒚).                  (7) 

The absolute regression deviation mean actually represents 

the expected value of difference between the actual values of 

data and the estimated ones. In order to facilitate the 

calculation, we have done a square process in this definition. 

In fact, we can view the absolute regression deviation mean as 

the adjusted distances of data to their fitting hyperplane. Next, 

we give the concept of the absolute regression deviation 

variance as follows: 

Definition 2. Absolute regression deviation variance is 

defined as follows:   

𝜑̂ = (
1

𝑛
√∑∑|𝑦𝑖 − 𝑓(𝒙𝑖) − 𝑦𝑗 + 𝑓(𝒙𝑗)|

2
𝑛

𝑗=1

𝑛

𝑖=1

)

2

 

             =
2

𝑛2
[𝒘𝑇𝑿(𝑛𝑰 − 𝒆𝒆𝑇)𝑿𝑇𝒘− 2𝒚𝑇(𝑛𝑰 − 𝒆𝒆𝑇)𝑿𝑇𝒘+

                 𝒚𝑇(𝑛𝑰 − 𝒆𝒆𝑇)𝒚].                                                 (8) 

We can see that the absolute regression deviation variance 

quantifies the scatter of regression. 

Existing SVR’s loss is calculated only if the absolute value 

of the difference between the actual data and the estimated 

values is greater than a threshold. The fitting hyperplane 

constructed by SVR is only affected by the distribution of the 

boundary data. If the distribution of the boundary data largely 

deviates from that of the internal data, the hyperplane 

constructed will be inconsistent with the actual overall data 

distribution. To overcome this issue, 𝑣-MADR aims to obtain 

a tradeoff between the distribution of the boundary data and 

that of the internal data. This means that the fitting hyperplane 

constructed by 𝑣 -MADR is not only determined by the 

distribution of the boundary data, but also measures the 

influence of the overall data distribution on the fitting 

hyperplane by simultaneously minimizing the absolute 

regression deviation mean and the absolute regression 

deviation variance, which is closer to the real distribution for 

many datasets and is more robust to noise. 

Therefore, similar to the soft-margin of 𝑣-SVR [28], the 

final optimization problem considering the soft-margin has 

the following form: 

 𝑚𝑖𝑛
𝒘,𝜀,𝝃,𝝃∗

1

2
𝒘𝑇𝒘+ 𝜆1𝜑̂ + 𝜆2𝜑̄ + 𝐶 (𝑣𝜀 +

1

𝑛
(𝒆𝑇𝝃 + 𝒆𝑇𝝃∗)) 

    𝑠. 𝑡. 𝒚 − 𝑿𝑇𝒘 ≤ 𝜀𝒆 + 𝝃,                                                 (9) 

         𝑿𝑇𝒘 − 𝒚 ≤ 𝜀𝒆 + 𝝃∗, 
         𝝃, 𝝃∗ ≥ 𝟎,   
         𝜀𝒆 ≥ 𝟎,                                              

where parameters 𝜆1  and 𝜆2  are aimed at achieving the 

tradeoff among the absolute regression deviation mean, the 

absolute regression deviation variance and the model 

complexity. It is evident that the soft-margin 𝑣 -MADR 

subsumes the soft-margin 𝑣-SVR when 𝜆1 and 𝜆2 both equal 

0. The meanings of the other variables have been introduced 

in previous formula. 

B. ALGORITHMS FOR 𝒗-MADR 

Solving Formula (9) is a key point for 𝑣-MADR in practical 

use. In this section, we first design a dual coordinate descent 

(DCD) algorithm for kernel 𝑣-MADR, and then present an 

average stochastic gradient descent (ASGD) algorithm for 

large-scale linear kernel 𝑣-MADR. 
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1) KERNEL 𝒗-MADR 

By substituting the absolute regression deviation mean 𝜑̄ 

(Definition 1) and the absolute regression deviation variance 

𝜑̂ (Definition 2) into Formula (9), we obtain Formula (10) as 

follows: 

𝑚𝑖𝑛
𝒘,𝜀,𝝃,𝝃∗

1

2
𝒘𝑇𝒘+𝒘𝑇𝑿(

2𝜆1 + 𝜆2
𝑛

𝑰 −
2𝜆1
𝑛2

𝒆𝒆𝑇)𝑿𝑇𝒘 

           − (
4𝜆1 + 2𝜆2

𝑛
𝒚𝑇 −

4𝜆1
𝑛2

𝒚𝑇𝒆𝒆𝑇)𝑿𝑇𝒘 

           +C (𝑣𝜀 +
1

𝑛
(𝒆𝑇𝝃 + 𝒆𝑇𝝃∗))                                   (10)  

   𝑠. 𝑡. 𝒚 − 𝑿𝑇𝒘 ≤ 𝜀𝒆 + 𝝃, 
         𝑿𝑇𝒘− 𝒚 ≤ 𝜀𝒆 + 𝝃∗, 
         𝝃, 𝝃∗ ≥ 𝟎,   
         𝜀𝒆 ≥ 𝟎 ,                                               

The 𝐲𝐲𝑇  and 𝐲𝑇𝐞𝐞T𝐲  terms in 𝜑̄  (Definition 1) and 𝜑̂ 

(Definition 2) are constants in an optimization problem, so we 

omit this term. However, Formula (10) is still intractable 

because of the high dimensionality of 𝜙(𝒙)  and its 

complicated form. Inspired by [20, 33], we give the following 

theorem to state the optimal solution 𝒘 for Formula (10). 

Theorem 1. The optimal solution 𝒘 for Formula (10) can be 

represented by the following form: 

𝒘 = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝜙(𝒙𝑖)

𝑛
𝑖=1 = 𝑿(𝜶 − 𝜶∗),            (11)              

where 𝛂 = [𝛼1, 𝛼2, … , 𝛼𝑛]
𝑇  and 𝛂∗ = [𝛼1

∗, 𝛼2
∗, … , 𝛼𝑛

∗ ]𝑇  are 

the parameters of 𝑣-MADR. 

Proof. Suppose that 𝒘 can be decomposed into the span of 

𝜙(𝒙𝑖) and an orthogonal vector, that is, 

         𝒘 =∑(𝛼𝑖 − 𝛼𝑖
∗)𝜙(𝒙𝑖)

𝑛

𝑖=1

+ 𝒛 = 𝑿(𝜶 − 𝜶∗) + 𝒛, 

where 𝒛 satisfies (𝜙(𝒙𝑗)
𝑇
⋅ 𝒛) = 0 for all 𝑗, that is, 𝑿𝑇𝒛 = 𝟎. 

Then we obtain the following equation: 

         𝑿𝑇𝒘 = 𝑿𝑇(𝑿(𝜶 − 𝜶∗) + 𝒛) = 𝑿𝑇𝑿(𝜶 − 𝜶∗).       (12)           

According to Equation (12), the second and the third terms 

and the constraints of Formula (10) are independent of 𝒛 . 

Besides, the last term of Formula (10) can also be considered 

as being independent of 𝒛 . To simplify the first term of 

Formula (10), and consider 𝑿𝑇𝒛 = 𝟎, we get 

𝒘𝑇𝒘 = (𝑿(𝜶 − 𝜶∗) + 𝒛)𝑇(𝑿(𝜶 − 𝜶∗) + 𝒛) 
 = (𝜶 − 𝜶∗)𝑇𝑿𝑇𝑿(𝜶 − 𝜶∗) + 𝒛𝑇𝒛 

                         ≥ (𝜶 − 𝜶∗)𝑇𝑿𝑇𝑿(𝜶 − 𝜶∗), 

where the equal relationship in the above “ ≥ ” is valid if and 

only if 𝒛 = 𝟎. Thus, setting 𝒛 = 𝟎 does not affect the rest of 

the terms and strictly reduces the first term of Formula (10). 

Based on all above, 𝒘 in Formula (10) can be represented as 

the form of Equation (11). Q.E.D. 

Based on Theorem 1, we have 

𝑿𝑇𝒘 = 𝑿𝑇𝑿(𝜶 − 𝜶∗) = 𝑸(𝜶 − 𝜶∗), 

𝒘𝑇𝒘 = (𝜶 − 𝜶∗)𝑇𝑿𝑇𝑿(𝜶 − 𝜶∗)  = (𝜶 − 𝜶∗)𝑇𝑸(𝜶 − 𝜶∗),  

where 𝑸 = 𝐗T𝐗 is the kernel matrix. Let 𝜶′ = (𝛂 − 𝛂∗), thus 

Formula (9) leads to  

𝑚𝑖𝑛
𝜶′,𝜀,𝝃,𝝃∗

1

2
(𝜶′)𝑇𝑮(𝜶′) + 𝑯𝑇𝜶′ + 𝐶 (𝑣𝜀 +

1

𝑛
(𝒆𝑇𝝃 + 𝒆𝑇𝝃∗)) 

      s.t. 𝒚 − Q𝜶′ ≤ 𝜀e+𝝃,                                                  (13) 

           Q𝜶′ − 𝒚 ≤ 𝜀e+𝝃∗, 
          𝝃, 𝝃∗ ≥ 𝟎, 
          𝜀𝒆 ≥ 𝟎,                          

where G=Q+
4𝜆1+2𝜆2

𝑛
𝑸𝑇𝑸 −

4𝜆1

𝑛2
𝑸𝑇𝒆𝒆𝑇𝑸 and 𝑯 =

−
4𝜆1+2𝜆2

𝑛
𝑸𝑇𝒚 +

4𝜆1

𝑛2
𝑸𝑇𝒆𝒆𝑇𝒚. By introducing the Lagrange 

multipliers 𝜼, 𝜼∗, 𝜷, 𝜷∗ and 𝜸, the Lagrange function of 

Formula (13) is given as follows: 

𝐿(𝜶′, 𝝃, 𝝃∗, 𝜀, 𝜷, 𝜷∗, 𝜼, 𝜼∗, 𝜸) =
1

2
(𝜶′)𝑇𝑮(𝜶′) + 𝑯𝑇𝜶′ +

𝐶 (𝑣𝜀 +
1

𝑛
(𝒆𝑇𝝃 + 𝒆𝑇𝝃∗)) − 𝜷𝑇(𝜀e+𝝃 − 𝒚 + Q𝜶′) −

𝜷∗𝑇(𝜀e+𝝃∗ + 𝒚 − Q𝜶′) − 𝜼𝑻𝝃 − 𝜼∗𝑇𝝃∗ − 𝜸𝑇𝜀𝒆,            (14) 

where 𝜷 = [𝛽1, 𝛽2, … , 𝛽𝑛]
𝑇 , 𝜷∗ = [𝛽1

∗, 𝛽2
∗, … , 𝛽𝑛

∗]𝑇 , 𝜼 =
[𝜂1, 𝜂2,…,𝜂𝑛]

𝑇 , 𝜼∗ = [𝜂1
∗, 𝜂2

∗ ,…,𝜂𝑛
∗ ]𝑇 , and 𝜸 =

[𝛾1, 𝛾2, … , 𝛾𝑛]
𝑇. By setting the partial derivatives {𝜶′, 𝝃, 𝝃∗, 𝜀} 

to zero for satisfying the KKT conditions [34], we can get the 

following equations: 

              
𝜕𝐿

𝜕𝜶′
= 𝑮𝜶′ +𝑯− 𝑸𝑇𝜷 + 𝑸𝑇𝜷∗ = 𝟎,                (15) 

              
𝜕𝐿

𝜕𝝃
=

𝐶

𝑛
𝒆 − 𝜷 − 𝜼 = 𝟎,                                       (16) 

              
𝜕𝐿

𝜕𝝃∗
=

𝐶

𝑛
𝒆 − 𝜷∗ − 𝜼∗ = 𝟎,                                   (17) 

              
𝜕𝐿

𝜕𝜀
= 𝐶𝑣 − 𝒆𝑇𝜷 − 𝒆𝑇𝜷∗ − 𝒆𝑇𝜸 = 0.                  (18) 

By substituting Equations (15), (16), (17) and (18) into 

Equation (14), Equation (14) is re-written as: 

𝑚𝑖𝑛
𝜷,𝜷∗

𝑓(𝜷, 𝜷∗) =
1

2
(𝜷 − 𝜷∗)𝑇𝑷(𝜷 − 𝜷∗) + 𝒔𝑇(𝜷 − 𝜷∗) 

   𝑠. 𝑡. 𝒆𝑇(𝜷 + 𝜷∗) ≤ 𝐶𝑣,                                                         (19) 

        0 ≤ 𝛽𝑖 , 𝛽𝑖
∗ ≤

𝐶

𝑛
, 𝑖 = 1,2, … , 𝑛,  

where 𝑷 = 𝑸𝑮−1𝑸𝑇  and 𝒔 = −𝑸𝑮−1𝑯− 𝒚, 𝑮−1  stands for 

the inverse matrix of 𝑮. 

According to Chang and Lin, the inequality 𝒆𝑇(𝜶 + 𝜶∗) ≤
𝐶𝑣  in 𝑣 -SVR can be replaced by the equality form of 

𝒆𝑇(𝜶 + 𝜶∗) = 𝐶𝑣  with the constraint 0 < 𝑣 ≤ 1, and there 

always exists the optimal solution [11]. Based on this 

conclusion, we can attain the equation for the following form: 

            𝒆𝑇(𝜷 + 𝜷∗) = 𝐶𝑣.                               (20) 

We thus substitute the equation  𝜷∗ = 𝐶𝑣𝒆 − 𝜷  into 

Formula (19), and Formula (19) can be obtained as follows: 
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𝑚𝑖𝑛
𝜷
𝑓(𝜷) =

1

2
(2𝜷 − 𝐶𝑣𝒆)𝑇𝑷(2𝜷 − 𝐶𝑣𝒆) + 𝒔𝑇(2𝜷 − 𝐶𝑣𝒆) 

𝑠. 𝑡. 0 ≤ 𝛽𝑖 ≤
𝐶

𝑛
, 𝑖 = 1,2, … , 𝑛.                                         (21) 

As one can see from Formula (21), by substituting the 

equation 𝜷∗ = 𝐶𝑣𝒆 − 𝜷  into Formula (19), the number of 

computational parameters of the 𝑣-MADR has been halved. 

Due to the simple box constraint and the convex quadratic 

objective function, there exist many methods to solve the 

optimization problem [35-38]. To solve Formula (21), we use 

the DCD algorithm [39], which continuously selects one of the 

variables for minimization and keeps others as constants, thus 

a closed-form solution can be achieved at each iteration. In our 

situation, we minimize the variation of 𝑓(𝜷) by adjusting the 

value of 𝛽𝑖 ∈ 𝜷 with a step size of 𝑡 while keeping other 𝛽𝑘≠𝑖  
as constants, then we need to solve the following sub-problem: 

                         𝑚𝑖𝑛
𝑡
𝑓(𝜷 + 𝑡𝒅𝑖) 

                         𝑠. 𝑡. 0 ≤ 𝛽𝑖 + 𝑡 ≤
𝐶

𝑛
, 𝑖 = 1,2, … , 𝑛, 

where 𝒅𝑖  denotes the vector with 1 in the 𝑖-th element and 0′𝑠 

elsewhere. Thus, we have 

         𝑓(𝜷 + 𝑡𝒅𝑖) = 𝑓(𝜷) + [𝛻𝑓(𝜷)]𝑖𝑡 + 2𝑝𝑖𝑖𝑡
2,            (22) 

where 𝑝𝑖𝑖  is the diagonal entry of 𝑷. Then we calculate the 

gradient 𝛻𝑓(𝜷)𝑖 in Equation (22) as follows: 

[𝛻𝑓(𝜷)]𝑖 = 2𝒅𝑖
𝑇𝑷(2𝜷 − 𝐶𝑣𝒆) + 2𝒔𝑇𝒅𝑖 . 

As 𝑓(𝜷)  is independent of 𝑡 , it can be omitted from 

Equation (22). Hence 𝑓(𝜷 + 𝑡𝒅𝑖) can be transformed into a 

simple quadratic function. If we denote 𝛽𝑖
𝑖𝑡𝑒𝑟  as the value of 

𝛽𝑖 at the 𝑖𝑡𝑒𝑟-th iteration, 𝛽𝑖
𝑖𝑡𝑒𝑟+1 = 𝛽𝑖

𝑖𝑡𝑒𝑟 + 𝑡 is the value at 

the (𝑖𝑡𝑒𝑟 + 1)-th iteration. To solve Equation (22), we can 

have the minimization of 𝑡 which satisfies Equation (22) for 

the following form: 

𝑡 = −
[𝛻𝑓(𝜷)]𝑖
4𝑝𝑖𝑖

. 

Thus, the value of 𝛽𝑖
𝑖𝑡𝑒𝑟+1 is obtained as  

𝛽𝑖
𝑖𝑡𝑒𝑟+1 = 𝛽𝑖

𝑖𝑡𝑒𝑟 −
[𝛻𝑓(𝜷)]𝑖
4𝑝𝑖𝑖

. 

Furthermore, considering the box constraint 0 ≤ 𝛽𝑖 ≤
𝐶

𝑛
, 

we have the minimization for 𝛽𝑖
𝑖𝑡𝑒𝑟+1 as follows: 

𝛽𝑖
𝑖𝑡𝑒𝑟+1 ← 𝑚𝑖𝑛(𝑚𝑎𝑥(𝛽𝑖

𝑖𝑡𝑒𝑟 −
[𝛻𝑓(𝜷𝑖𝑡𝑒𝑟)]𝑖

4𝑝𝑖𝑖
, 0), 𝐶/𝑛). 

After 𝜷 converges, we can obtain 𝛂′ according to Equation 

(15) and Equation (20) as follows: 

𝜶′=G−1(𝑸𝑇(𝜷 − 𝜷∗) − 𝑯)=G−1(𝑸𝑇(2𝜷 − 𝐶𝑣𝒆) − 𝑯). 

Thus, the final function is 

𝑓(𝒙) =∑𝛼𝑖
′𝜅(𝒙𝑖 , 𝒙),

𝑛

𝑖=1

 

where 𝛼𝑖
′ = (𝛼𝑖 − 𝛼𝑖

∗). 
Algorithm 1 summarizes the procedure of 𝑣-MADR with 

the kernel functions. The initial value of 𝜷 is 𝐶𝑣𝒆 2⁄ , which 

simplifies the calculation procedure of 𝑣-MADR and satisfies 

Equation (20). Parameter 𝑣  is controllable and its range is 

(0,1]. 

Algorithm 1 Dual coordinate descent solver for kernel 
𝑣-MADR. 

Input: Dataset 𝑿, 𝜆1, 𝜆2, 𝐶, 𝑣; 
Output: 𝛂′; 

Initialization: 𝜷 =
𝐶𝑣𝒆

2
,  𝛂′ =

4𝜆1+2𝜆2

𝑛
𝑮−1𝑸𝑇𝒚 −

4𝜆1

𝑛2
𝑮−1𝑸𝑇𝒆𝒆𝑇𝒚,  𝑨 = 𝑮−1𝑸𝑇 ,  𝑝𝑖𝑖 = 𝒅𝑖

𝑇𝑸𝑮−1𝑸𝑇𝒅𝑖;  

1: for 𝑖𝑡𝑒𝑟 = 1,2, … ,𝑚𝑎𝑥𝐼𝑡𝑒𝑟 do 
2:     Randomly disturb 𝜷 and then get the random index; 
3:     for 𝑖 = 1,2, … , 𝑛 do 

4:       [𝛻𝑓(𝜷)]𝑖 ← 2(𝒅𝑖
𝑇𝑸𝛂′ − 𝑦𝑖); 

5:        𝛽𝑖
𝑡𝑚𝑝

← 𝛽𝑖; 

6:        𝛽𝑖 ← 𝑚𝑖𝑛(𝑚𝑎𝑥( 𝛽𝑖 −
[𝛻𝑓(𝜷)]𝑖

4𝑝𝑖𝑖
, 0), 𝐶/𝑛); 

7:        𝛂′ ← 𝛂′ + 2(𝛽𝑖 − 𝛽𝑖
𝑡𝑚𝑝

)𝑨𝒅𝑖 ; 

8:     end for 
9:     if 𝜷 converges then 
10:       break; 
11:    end if 
12:  end for 

We now analyze the computational complexity of 

Algorithm 1 as follows: 

The parameters initialization is shown in Table 1, where  𝑛 

represents the number of the examples and 𝑚 represents the 

number of features. 
TABLE 1 

TIME COMPLEXITY OF THE FORMULA 

Formula being calculated 
Time complexity 

of the formula 

𝑸 = 𝐗T𝐗 𝑛 ∗ 𝑚 ∗ 𝑛 

𝑸𝒆 = 𝑸
𝑇𝒆 𝑛2 

G=Q+
4𝜆1 + 2𝜆2

𝑛
𝑸𝑇𝑸 −

4𝜆1
𝑛2

𝑸𝑇𝒆𝒆𝑇𝑸 1 + 𝑛3 + 𝑛2  

𝒊𝒏𝒗𝑮 = G
−𝟏 𝑛3 

𝑨 = G
−1𝑸 𝑛3 

𝑠𝑢𝑚𝑌 = 𝒆𝑇𝒚 𝑛 

𝑯 = −(
4𝜆1 + 2𝜆2

𝑛
𝑸𝑇𝒚 −

4𝜆1
𝑛2

𝑸𝑇𝒆𝒆𝑇𝒚) 𝑛2 

𝛂′ =
4𝜆1 + 2𝜆2

𝑛
𝑮−1𝑸𝑇𝒚 −

4𝜆1
𝑛2

𝑮−1𝑸𝑇𝒆𝒆𝑇𝒚 

            = −𝑮−1𝑯 

𝑛2 

𝑷 = 𝑸𝑮−1𝑸𝑇 = 𝑸𝑨 𝑛3 

The time complexity for the dual coordinate descent (DCD) 

algorithm is 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 ∗ 𝑛 ∗ 𝑛, where 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 is 1000. 

We can infer the time complexity of the DCD algorithm is 

the sum of the above time complexity. In summary, the time 
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complexity of the DCD algorithm is 𝑂(𝑛3)  and it has the 

space complexity of 𝑂(𝑛2). 

2) LARGE-SCALE LINEAR KERNEL 𝒗-MADR 

In regression analysis, processing larger datasets may increase 

the time complexity. Although the DCD algorithm could solve 

kernel 𝑣-MADR efficiently for small sample problems, it is 

not the best strategy for larger problems. Considering 

computational time cost, we adopt an averaged stochastic 

gradient descent (ASGD) algorithm [40] to linear kernel 𝑣-

MADR to improve the scalability of 𝑣-MADR, and ASGD 

solves the optimization problem by computing a noisy 

unbiased estimate of the gradient, and it randomly samples a 

subset of the training instances rather than all data. 

We reformulate Formula (10) into a linear kernel 𝑣-MADR 

as follows: 

𝑚𝑖𝑛
𝒘
𝑔(𝒘) =

1

2
𝒘𝑇 [𝑰 +

4𝜆1+2𝜆2

𝑛
𝑿𝑿𝑇 −

4𝜆1

𝑛2
𝑿𝒆𝒆𝑇𝑿𝑇] 𝒘 +

[−
4𝜆1+2𝜆2

𝑛
𝑿𝒚 +

4𝜆1

𝑛2
𝑿𝒆𝒆𝑇𝒚]

𝑇

𝒘+
𝐶

𝑛
(∑ 𝑚𝑎𝑥( 0, 𝑦𝑖 −

𝑛
𝑖=1

𝒘𝑇𝒙𝑖 − 𝜀) + ∑ 𝑚𝑎𝑥( 0,𝒘𝑇𝒙𝑖 − 𝑦𝑖 − 𝜀)
𝑛
𝑖=1 ),                 (23) 

where 𝑿 = [𝒙1, 𝒙2, … , 𝒙𝑛]  and 𝒚 = [𝑦1, 𝑦2 , … , 𝑦𝑛]
𝑇 . The 

term 𝐶𝑣𝜀  in Formula (10) is constant in an optimization 

problem, so we omit this term. 

For large-scale problems, it is expensive to compute the 

gradient of Formula (23) because we need all the training 

samples for computation. Stochastic gradient descent (SGD) 

[41, 42] works by computing a noisy unbiased estimation of 

the gradient via sampling a subset of the training samples. 

When the objective is convex, the SGD is expected to 

converge to the global optimal solution. In recent years, SGD 

has been successfully used in various machine learning 

problems with powerful computation efficiency [43-46]. 

In order to obtain an unbiased estimation of the gradient 

𝛻𝑔(𝒘), we first present the following theorem which can be 

proved by computing 𝛻𝑔(𝒘). 

Theorem 2. If two samples (𝒙𝑖, 𝑦𝑖) and (𝒙𝑗 , 𝑦𝑗) are sampled 

from the training data set randomly, then 

𝛻𝑔(𝒘, 𝒙𝑖 , 𝒙𝑗) = (4𝜆1 + 2𝜆2)𝒙𝑖𝒙𝑖
𝑇𝑤 − 4𝜆1𝑒𝑖𝒙𝑖𝑒𝑗𝒙𝑗

𝑇𝒘+

                             𝒘 − (4𝜆1 + 2𝜆2)𝑦𝑖𝒙𝑖 + 4𝜆1𝑒𝑖𝒙𝑖𝑒𝑗𝑦𝑗 −

                            𝐶 {
𝒙𝑖        𝑖 ∈ 𝐼1,
−𝒙𝑖     𝑖 ∈ 𝐼2,
𝟎        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

                               (24) 

is an unbiased estimation of 𝛻𝑔(𝒘) . Here 𝐼1 = {𝑖|𝑦𝑖 −
𝒘𝑇𝒙𝑖 ≥ 𝜀}, 𝐼2 = {𝑖|𝒘𝑇𝒙𝑖 − 𝑦𝑖 ≥ 𝜀}. 
Proof. Note that the gradient of 𝑔(𝒘) is  

𝛻𝑔(𝒘) = 𝑮𝒘 +𝑯 −
𝐶

𝑛

{
  
 

  
 ∑𝒙𝑖

𝑛

𝑖=1

        𝑖 ∈ 𝐼1,

∑−𝒙𝑖

𝑛

𝑖=1

     𝑖 ∈ 𝐼2,

𝟎             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

where 𝑮 = 𝑰 +
4𝜆1+2𝜆2

𝑛
𝑿𝑿𝑇 −

4𝜆1

𝑛2
𝑿𝒆𝒆𝑇𝑿𝑇 and 𝑯 =

−
4𝜆1+2𝜆2

𝑛
𝑿𝒚 +

4𝜆1

𝑛2
𝑿𝒆𝒆𝑇𝒚. Further note that 

                𝐸𝒙𝑖[𝒙𝑖𝒙𝑖
𝑇] =

1

𝑛
∑𝒙𝑖𝒙𝑖

𝑇

𝑛

𝑖=1

=
1

𝑛
𝑿𝑿𝑇 , 

               𝐸𝒙𝑖[𝑦𝑖𝒙𝑖] =
1

𝑛
∑𝑦𝑖𝒙𝑖

𝑛

𝑖=1

=
1

𝑛
𝑿𝒚, 

               𝐸𝒙𝑖[𝑒𝑖𝒙𝑖] =
1

𝑛
∑𝒙𝑖

𝑛

𝑖=1

=
1

𝑛
𝑿𝒆, 

               𝐸𝒙𝑖[𝑒𝑖𝑦𝑖] =
1

𝑛
∑ 𝑦𝑖
𝑛
𝑖=1 =

1

𝑛
𝒚𝑇𝒆.                          (25) 

According to the linearity of expectation, the independence 

between 𝒙𝑖 and  𝒙𝑗 , and with the set of equations (25), we 

have 

𝐸𝒙𝑖𝒙𝑗[𝛻𝑔(𝒘, 𝒙𝑖 , 𝒙𝑗)] 

= (4𝜆1 + 2𝜆2) 𝐸𝒙𝑖[𝒙𝑖𝒙𝑖
𝑇]𝒘 − 4𝜆1 𝐸𝒙𝑖[𝑒𝑖𝒙𝑖]𝐸𝒙𝑗  [𝑒𝑗𝒙𝑗]𝒘 

+𝒘− (4𝜆1 + 2𝜆2)𝐸𝒙𝑖[𝑦𝑖𝒙𝑖] + 4𝜆1𝐸𝒙𝑖[𝑒𝑖𝒙𝑖]𝐸𝒙𝑗[𝑒𝑗𝑦𝑗] 

     −𝐶 {

𝐸𝒙𝑖[𝒙𝑖|𝑖 ∈ 𝐼1],

𝐸𝒙𝑖[−𝒙𝑖|𝑖 ∈ 𝐼2],

𝟎   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

= (4𝜆1 + 2𝜆2)
1

𝑛
𝑿𝑿𝑇𝒘 − 4𝜆1

1

𝑛2
𝑿𝒆𝒆𝑇𝑿𝑇𝒘 +𝒘 

    −(4𝜆1 + 2𝜆2)
1

𝑛
𝑿𝒚 +  4𝜆1

1

𝑛2
𝑿𝒆𝒆𝑇𝒚   

   −𝐶
1

𝑛

{
  
 

  
 ∑𝒙𝑖

𝑛

𝑖=1

, 𝑖 ∈ 𝐼1,

∑−𝒙𝑖

𝑛

𝑖=1

, 𝑖 ∈ 𝐼2,

𝟎   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

  = 𝑮𝒘 + 𝑯−
𝐶

𝑛

{
  
 

  
 ∑𝒙𝑖

𝑛

𝑖=1

        𝑖 ∈ 𝐼1 ,

∑−𝒙𝑖

𝑛

𝑖=1

     𝑖 ∈ 𝐼2,

𝟎             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

 = 𝛻𝑔(𝒘). 

It is shown that 𝛻𝑔(𝒘, 𝒙𝑖 , 𝒙𝑗) is a noisy unbiased gradient 

of 𝑔(𝒘). Q.E.D. 

Based on Theorem 2, the stochastic gradient can be updated 

as follows: 

                   𝒘𝑡+1 = 𝒘𝑡 − 𝜑𝑡𝛻𝑔(𝒘, 𝒙𝑖 , 𝒙𝑗),                     (26) 

where 𝜑𝑡 is the learning rate at the 𝑡-th iteration. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2992703, IEEE Access

 

VOLUME XX, 2017                                                                                                                                                                                                                                                                          8 

Since the ASGD algorithm is more robust than the SGD 

algorithm [47], we actually adopt the ASGD algorithm to 

solve the optimization problem in Formula (23). At each 

iteration, in addition to updating the normal stochastic gradient 

in Equation (26), we also compute 

𝒘̄𝑡 =
1

𝑡 − 𝑡0
∑ 𝒘𝑖

𝑡

𝑖=𝑡0+1

, 

where 𝑡0 decides when to take the averaging operation. This 

average can also be calculated in a recursive formula as 

follows: 

𝒘̄𝑡+1 = 𝒘̄𝑡 + 𝛿𝑡(𝒘𝑡+1 − 𝒘̄𝑡), 
where 𝛿𝑡 = 1/𝑚𝑎𝑥{ 1, 𝑡 − 𝑡0}. 

Algorithm 2 summarizes the procedure of large-scale linear 

kernel 𝑣-MADR. 

Algorithm 2 Averaged stochastic gradient descent 
solver for linear kernel 𝑣-MADR. 

Input: Dataset 𝑿, 𝜆1, 𝜆2, 𝐶, 𝜀; 
Output: 𝒘

_
; 

Initialization: 𝒖 = 𝟎,  𝑡 = 1,  𝑇 = 5; 
1: While 𝑡 ≤ 𝑇 ⋅ 𝑛 do 
2: Randomly select the training instances (𝒙𝑖 , 𝒚𝑖) and 

(𝒙𝑗 , 𝒚𝑗); 

3: Compute 𝛻𝑔(𝒘, 𝒙𝑖 , 𝒙𝑗) as in Equation (24); 

4: 𝒘 ← 𝜑𝑡𝛻𝑔(𝒘, 𝒙𝑖 , 𝒙𝑗); 

5: 𝒘̄ ← 𝒘̄ + 𝛿𝑡(𝒘 − 𝒘̄); 
6: end while  

The time complexity of the averaged stochastic gradient 

descent (ASGD) algorithm is 𝑂(𝑇 ∗ 𝑛 ∗ 𝑚)  and its space 

complexity is 𝑂(𝑛 ∗ 𝑚).  

3) PROPERTIES OF 𝑣-MADR 

We study the statistical property of 𝑣-MADR that leads to a 

bound on the expectation of error for 𝑣-MADR according to 

the leave-one-out cross-validation estimate, which is an 

unbiased estimate of the probability of test error. For the sake 

of simplicity, we only discuss the linear case as shown 

Formula (10) here, in which 𝒘  can be represented by the 

following form: 

𝒘 = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑛

𝑖=1 = 𝜶 − 𝜶∗, 
while the result is also used in kernel mapping situations ϕ. 

Then we can get the dual problem of Formula (10) using the 

same steps as in Section III.B.1, i.e. 

𝑚𝑖𝑛
𝜷
𝑓(𝜷) =

1

2
(2𝜷 − 𝐶𝑣𝒆)𝑇𝑷(2𝜷 − 𝐶𝑣𝒆) + 𝒔𝑇(2𝜷 − 𝐶𝑣𝒆) 

𝑠. 𝑡. 0 ≤ 𝛽𝑖 ≤
𝐶

𝑛
, 𝑖 = 1,2, … , 𝑛,                                         (27) 

where 𝑷 = 𝑿𝑇𝑮−1𝑿, 𝒔 = −𝑿𝑇𝑮−1𝑯− 𝒚, G=
4𝜆1+2𝜆2

𝑛
𝑿𝑿𝑇  

−
4𝜆1

𝑛2
𝑿𝒆𝒆𝑇𝑿𝑇+𝑰 and 𝑯 = −

4𝜆1+2𝜆2

𝑛
𝑿𝒚 +

4𝜆1

𝑛2
𝑿𝒆𝒆𝑇𝒚. 

Definition 3. Regression error is defined as follows:  

𝜋(𝒙, 𝑦) = |𝑦 − 𝑓(𝒙)|. 

We give the following theorem to state the expectation of 

the probability of test error. 

Theorem 3. Let 𝜷  be the optimal solution of (27), and 

𝐸[𝑅(𝜷)] be the expectation of the probability of test error, 

then we have 

          𝐸[𝑅(𝜃)] ≤
𝐸[𝜀|𝑰1|+2𝑝∑ 𝛽𝑖𝑖𝜖𝑰2 +∑ (𝜀+𝜉𝑖̅)𝑖𝜖𝑰3 ]

𝑛
                 (28) 

where 𝐼1 ≡ {𝑖|(𝛽𝑖 = 0) ∩ (𝛽𝑖
∗ = 0)} , 𝐼2 ≡ {𝑖|((0 < 𝛽𝑖 <

𝐶 𝑛⁄ ) ∩ (𝛽𝑖
∗ = 0)) ∪ ((0 < 𝛽𝑖

∗ < 𝐶 𝑛⁄ ) ∩ (𝛽𝑖 = 0))} ,  𝐼3 ≡
{𝑖|((𝛽𝑖 = 𝐶 𝑛⁄ ) ∩ (𝛽𝑖

∗ = 0)) ∪ ((𝛽𝑖
∗ = 𝐶 𝑛⁄ ) ∩ (𝛽𝑖 = 0))} , 

𝜉𝑖̅ = 𝑚𝑎𝑥 {𝜉𝑖 , 𝜉𝑖
∗}, 𝑝 = 𝑚𝑎𝑥 {𝑝𝑖𝑖 , 𝑖 = 0,1,⋯ , 𝑛}, 𝛽𝑖

∗ = 𝐶𝑣 −
𝛽𝑖 and 𝑝𝑖𝑖  is the diagonal entry of 𝑷. 

Proof. Suppose 

               𝜷∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
0≤𝜷≤

𝐶

𝑛

𝑓(𝜷),   

              𝜷𝒊 = 𝑎𝑟𝑔𝑚𝑖𝑛
0≤𝜷≤

𝐶

𝑛
,𝛽𝑖=0

𝑓(𝜷) , 𝑖 = 1,2,⋯ 𝑛                  

and the corresponding solution for the linear kernel 𝑣-MADR 

are 𝒘′ and 𝒘𝑖 , respectively. 

According to [48],  

            𝐸[𝑅(𝜃)] ≤
𝐸[𝐿((𝒙1,𝑦1),(𝒙2,𝑦2),…,(𝒙𝑛 ,𝑦𝑛))]

𝑛
                (29) 

where 𝐿((𝒙1, 𝑦1), (𝒙2, 𝑦2), … , (𝒙𝑛, 𝑦𝑛)) is the number of 

errors in the leave-one-out procedure.  

In the process of solving Formula (27) using the Lagrange 

multipliers, every sample must meet the following KKT 

conditions: 

𝛽𝑖(𝜀+𝜉𝑖 − 𝑦𝑖 + 𝒙𝑖
𝑇𝜶′) = 0,  

𝛽𝑖
∗(𝜀+𝜉𝑖

∗ + 𝑦𝑖 − 𝒙𝑖
𝑇𝜶′) = 0, 

(
𝐶

𝑛
− 𝛽𝑖) 𝜉𝑖 = 0, 

(
𝐶

𝑛
− 𝛽𝑖

∗) 𝜉𝑖
∗ = 0, 

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0, 𝑖 = 1,2, … , 𝑛, 

𝜀 ≥ 0.   

According to the KKT conditions, we have that if and only 

if 𝜀+𝜉𝑖 − 𝑦𝑖 + 𝒙𝑖
𝑇𝜶′ = 0, 𝛽𝑖 can take a non-zero value, and 

if and only if 𝜀+𝜉𝑖
∗ + 𝑦𝑖 − 𝒙𝑖

𝑇𝜶′ = 0, 𝛽𝑖
∗ can take a non-zero 

value. In other words, if the sample (𝒙𝑖 , 𝑦𝑖) is not in the 𝜀-tube 

in the leave-one-out procedure, 𝛽𝑖 and 𝛽𝑖
∗ can take a non-zero 

value. In addition, 𝜀+𝜉𝑖 − 𝑦𝑖 + 𝒙𝑖
𝑇𝜶′ = 0 and 𝜀+𝜉𝑖

∗ + 𝑦𝑖 −
𝒙𝑖
𝑇𝜶′ = 0 cannot be established at the same time, so we get 

that at least one of 𝛽𝑖 and 𝛽𝑖
∗ is zero. The specific breakdown 

is as follows: 

i) If the sample (𝒙𝑖 , 𝑦𝑖) is in the 𝜀-tube in the leave-one-out 

procedure, then 𝜀+𝜉𝑖 − 𝑦𝑖 + 𝒙𝑖
𝑇𝜶′ ≠ 0  and 𝜀+𝜉𝑖

∗ + 𝑦𝑖 −
𝒙𝑖
𝑇𝜶′ ≠ 0, so we have 𝛽𝑖 = 0 and 𝛽𝑖

∗ = 0; 

ii) If the sample (𝒙𝑖 , 𝑦𝑖) is out of the 𝜀-tube in the leave-

one-out procedure, we have the following two situations: 
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a) if the sample is above the 𝜀-tube, then 𝜉𝑖 ≠ 0 and 

𝜀+𝜉𝑖
∗ + 𝑦𝑖 − 𝒙𝑖

𝑇𝜶′ ≠ 0 . So we have 𝛽𝑖 = 𝐶 𝑛⁄  and 

𝛽𝑖
∗ = 0; 

b) if the sample is under the 𝜀-tube, then 𝜉𝑖
∗ ≠ 0 and 

𝜀+𝜉𝑖 − 𝑦𝑖 + 𝒙𝑖
𝑇𝜶′ ≠ 0 . So we have 𝛽𝑖

∗ = 𝐶 𝑛⁄  and 

𝛽𝑖 = 0; 

iii) If the sample (𝒙𝑖 , 𝑦𝑖) is on the gap of the 𝜀-tube in the 

leave-one-out procedure, we have the following two situations: 

 a) if the sample is on the upper gap of the 𝜀-tube, then       

            𝜉𝑖 = 0, and we have 0 < 𝛽𝑖 ≤ 𝐶 𝑛⁄  and 𝛽𝑖
∗ = 0; 

 b) if the sample is on the lower gap of the 𝜀-tube, then 

            𝜉𝑖
∗ = 0, and we have 0 < 𝛽𝑖

∗ ≤ 𝐶 𝑛⁄  and 𝛽𝑖 =  0. 

Based on the discussion above, we consider the following 

three cases to calculate the test error: 

i) If both 𝛽𝑖 = 0  and 𝛽𝑖
∗ = 0 , we have that the sample 

(𝒙𝑖 , 𝑦𝑖) is in the 𝜀-tube in the leave-one-out procedure, and 

𝜋(𝒙𝑖 , 𝑦𝑖) ≤ 𝜀. 

ii) If (0 < 𝛽𝑖 < 𝐶 𝑛⁄ ) ∩ (𝛽𝑖
∗ = 0)  or (0 < 𝛽𝑖

∗ < 𝐶 𝑛⁄ ) ∩
(𝛽𝑖 = 0), we have that  

𝑓(𝜷𝒊) − 𝑚𝑖𝑛
𝑡
𝑓(𝜷𝒊 + 𝑡𝒅𝑖) ≤ 𝑓(𝜷

𝒊) − 𝑓(𝜷′),                   (30) 

𝑓(𝜷𝒊) − 𝑓(𝜷′) ≤ 𝑓(𝜷′ − 𝛽𝑖
′𝒅𝑖) − 𝑓(𝜷

′),                        (31) 

where 𝒅𝑖  denotes the vector with 1 in the 𝑖-th element and 0′𝑠 

elsewhere. We can discovery that the left-hand side of formula 

(30) is equal to [𝛻𝑓(𝜷)]𝑖
2 (8𝑝𝑖𝑖)⁄ = (𝒙𝑖

𝑇𝒘𝑖 − 𝑦𝑖)
2 (2𝑝𝑖𝑖)⁄  

and the right-hand side of formula (31) is equal to 2𝑝𝑖𝑖𝛽𝑖
′2. So 

by combining formula (30) and (31), we have 

𝜋(𝒙𝑖 , 𝑦𝑖)
2 (2𝑝𝑖𝑖)⁄ = (𝒙𝑖

𝑇𝒘𝑖 − 𝑦𝑖)
2 (2𝑝𝑖𝑖)⁄ ≤ 2𝑝𝑖𝑖𝛽𝑖

′2 . 

Further, we can obtain 𝜋(𝒙𝑖 , 𝑦𝑖) ≤ 2𝑝𝑖𝑖𝛽𝑖
′. 

iii) If (𝛽𝑖 = 𝐶 𝑛⁄ ) ∩ (𝛽𝑖
∗ = 0) or (𝛽𝑖

∗ = 𝐶 𝑛⁄ ) ∩ (𝛽𝑖 = 0), 
we have that the sample (𝒙𝑖 , 𝑦𝑖) is not in the 𝜀-tube in the 

leave-one-out procedure. So we can get 𝜋(𝒙𝑖 , 𝑦𝑖) = 𝜀 + 𝜉i̅
′
, 

where 𝜉i̅
′
= 𝑚𝑎𝑥 {𝜉𝑖

′, 𝜉𝑖
∗′}. 

So we have  

𝐿((𝒙1, 𝑦1), … , (𝒙𝑛, 𝑦𝑛))

≤ 𝜀|𝑰1| + 2𝑝∑ 𝛽𝑖
′

𝑖𝜖𝑰2

+∑ (𝜀 + 𝜉𝑖̅
′
)

𝑖𝜖𝑰3

, 

where 𝐼1 ≡ {𝑖|(𝛽𝑖
′ = 0) ∩ (𝛽𝑖

∗′ = 0)} , 𝐼2 ≡ {𝑖| ((0 < 𝛽𝑖
′ <

𝐶 𝑛⁄ ) ∩ (𝛽𝑖
∗′ = 0)) ∪ ((0 < 𝛽𝑖

∗′ < 𝐶 𝑛⁄ ) ∩ (𝛽𝑖
′ =

0))} ,  𝐼3 ≡ {𝑖| ((𝛽𝑖
′ = 𝐶 𝑛⁄ ) ∩ (𝛽𝑖

∗′ = 0)) ∪ ((𝛽𝑖
∗′ =

𝐶 𝑛⁄ ) ∩ (𝛽𝑖
′ = 0))} ,  𝜉𝑖̅

′
= 𝑚𝑎𝑥 {𝜉𝑖

′, 𝜉𝑖
∗′} , 𝑝 = 𝑚𝑎𝑥 {𝑝𝑖𝑖 , 𝑖 =

0,1,⋯ , 𝑛} and 𝛽𝑖
∗′ = 𝐶𝑣 − 𝛽𝑖

′.Take expectation on both side 

and with formula (29), we reach the conclusion that formula 

(28) holds. Q.E.D. 

IV. EXPERIMENTAL RESULTS 

Since SVR-based algorithms are now widely used for 

regression problems and demonstrate better generalization 

ability [8-10] than many existing algorithms, such as least 

square regression [4], Neural Networks (NN) regression [5], 

logistic regression [6], and ridge regression [7], we will not 

repeat these comparisons. In this section, we empirically 

evaluate the performance of our 𝑣 -MADR compared with 

other SVR-based algorithms, including 𝑣-SVR, LS-SVR, 𝜀-

TSVR, and linear 𝜀-SVR on several datasets, including two 

artificial datasets, eight medium-scale datasets, and six large-

scale datasets. All algorithms are implemented with 

MATLAB R2014a on a PC with a 2.00GHz CPU and 32 GB 

memory. 𝑣-SVR is solved by LIBSVM [49]; 𝜀-SVR is solved 

by LIBLINEAR [50]; LS-SVR is solved by LSSVMlab [51]; 

and 𝜀-TSVR is solved by the SOR technique [52, 53]. RBF 

kernel 𝜅(𝐱𝑖
𝑇 , 𝐱𝑗

𝑇) = exp ( – ‖𝐱𝑖
𝑇  −   𝐱𝑗

𝑇‖
2
/σ2) and 

polynomial kernel 𝜅(𝐱𝑖
𝑇 , 𝐱𝑗

𝑇) = (𝐱𝑖 ⋅ 𝐱𝑗 + 1)
𝑑

 are employed 

for nonlinear regression. The values of the parameters are 

obtained by means of a grid-search method [54]. For brevity, 

we set 𝑐1 = 𝑐2, 𝑐3 = 𝑐4 and 𝜀1 = 𝜀2 for 𝜀-TSVR and 𝜆1 = 𝜆2 

for our nonlinear 𝑣-MADR. The parameter 𝑣 in 𝑣-MADR is 

selected from the set {2−9, 2−8, . . . , 20}, and the remaining 

parameters in the five methods and the parameters in the 

Gaussian kernel are selected from the set {2−9, 2−8, . . . , 29} 
by 10-fold cross-validation. Specifically, the parameter 𝑑 in 

polynomial kernel is selected from {2, 3, 4, 5, 6}. 
In order to evaluate the performance of the proposed 

algorithm, the performance metrics are specified before 

presenting the experimental results. Without loss of generality, 

let 𝑛 be the number of training samples and 𝑚 be the number 

of testing samples, denote 𝑦̂𝑖 as the prediction value of 𝑦𝑖, and 

𝑦̅ = (∑ 𝑦𝑖
𝑚
𝑖=1 ) 𝑚⁄  as the average value of 𝑦1 , 𝑦2, … , 𝑦𝑚. Then 

the details of the metrics used for assessing the performance 

of all regression algorithms are stated in Table 2. To 

demonstrate the overall performance of a method, a 

performance metric referred to average rank of each method is 

defined as 

average rank(𝑅) =
1

𝑠
∑ rank(𝑅)𝑖

𝑠

𝑖=1

, 

where 𝑅 ∈ {𝑣-SVR, LS-SVR, 𝜀-TSVR, LIBLINE-AR, 
𝑣-MADR}  is the regression method, 𝑠  is the number of 

datasets, and rank(𝑅)𝑖  means the performance rank of 

method 𝑅 on the 𝑖-th dataset among all regression methods. 

In our experiments, we test the performance of the above 

methods on two artificial datasets, eight medium-scale 

datasets and six large-scale data sets. The basic information of 

these datasets is given in Table 3. All real-world datasets are 

taken from UCI (http://archive.ics.uci.edu/ml) and StatLib 

(http:// lib.stat.cmu.edu/), and more detailed information can 

be accessed from those websites. Before regression analysis, 

all of these real datasets are normalized to zero mean and unit 

deviation. For medium-scale datasets, RBF kernel and 

polynomial kernel are used, and for large-scale datasets, only 

the linear kernel 𝑣 -MADR is used considering the 

computational complexity. Each experiment is repeated for 30 

trials with 10-fold cross validation and the mean evaluation of 

𝑅2 , NMSE, MAPE and their standard deviations were 

recorded. Particularly, the two datasets “Diabetes” and 

http://archive.ics.uci.edu/ml
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“Motorcycle” have smaller numbers of samples and features, 

so we use the leave-one-out cross validation instead. 
TABLE 2 

 PERFORMANCE METRICS 

Metrics Definition 

SSE SSE =∑(𝑦𝑖 − 𝑦̂𝑖)
2

𝑚

𝑖=1

 

SST 

 

 

SSR 

SST =∑(𝑦𝑖 − 𝑦̅)
2

𝑚

𝑖=1

 

 SSR =∑(𝑦̂𝑖 − 𝑦̅)
2

𝑚

𝑖=1

 

NMSE NMSE = SSE/SST 

 𝑅2 R2 =
(
1
𝑚
∑ (𝑦̂𝑖 − 𝐸[𝑦̂𝑖])(𝑦𝑖 − 𝐸[𝑦𝑖])
𝑚
𝑖=1 )

2

𝜎𝑦
2𝜎𝑦̂

2  

MAPE MAPE =
1

𝑚
∑|

𝑦𝑖 − 𝑦̂𝑖
𝑦𝑖

|

𝑚

𝑖=1

 

TABLE 3 

THE REAL-WORLD DATASETS USED FOR EXPERIMENTS 

Scale Dataset Samples Features Dataset Samples Features 

medium Diabetes 43 2 Motorcycle 133 1 

Autoprice 159 15 Servo 167 4 

Wisconsin 194 32 MachineCPU 209 31 

AutoMpg 398 7 WDBC 569 30 

large ConcreteCS 1030 8 Abalone 4177 8 

CPUsmall 8192 12 Bike 10886 9 

Driftdataset 13910 128 Cadate 20640 8 

A. ARTIFICIAL DATASETS 

In order to compare our 𝑣-MADR with 𝑣-SVR, LS-SVR, and 

𝜀 -TSVR, we choose two artificial datasets with different 

distributions. Firstly, we consider the function: 𝑦 = 𝑥
2

3 . In 

order to fully assess the performance of the methods, the 

training samples are added with Gaussian noises with zero 

means and 0.5 standard deviation, that is, we have the 

following training samples (𝑥𝑖 , 𝑦𝑖): 

𝑦𝑖 = 𝑥
𝑖

2

3 + 𝜉𝑖 , 𝑥𝑖~𝑈[−2,2], 𝜉𝑖~𝑁(0,0. 5
2),            (32) 

where 𝑈[𝑎, 𝑏]  represents the uniformly random variable in 

[𝑎, 𝑏] and 𝑁(𝜇, 𝜎2) represents the Gaussian random variable 

with means 𝜇 and standard deviation 𝜎, respectively. To avoid 

biased comparisons, ten independent groups of noisy samples 

are randomly generated, including 200 training samples and 

400 none noise test samples. 

The estimated functions obtained by these four methods are 

shown in Figure 1. Obviously, all four methods have obtained 

good fitted values, but our 𝑣 -MADR has the best 

approximation compared to the rest of the methods. Table 4 

shows the corresponding performance metrics and training 

time. Compared with the other methods, our 𝑣-MADR has the 

highest 𝑅2 , lowest NMSE and MAPE, which indicates that 

our 𝑣-MADR achieves good fitting performance and a good 

presentation of the statistical information in the training 

dataset. In addition, the CPU time of our 𝑣 -MADR is not 

much different from other methods, and equivalent to 𝑣-SVR. 

The second artificial example is the regression estimation 

on the Sinc function: 𝑦 = 𝑠𝑖𝑛(𝑥) 𝑥⁄ . The training samples are 

added with Gaussian noise with zero means and 0.5 standard 

deviation. Therefore, we have the following training samples 

(𝑥𝑖 , 𝑦𝑖): 

𝑦𝑖 =
𝑠𝑖𝑛( 𝑥𝑖)

𝑥𝑖
+ (0.5 −

|𝑥𝑖|

8𝜋
) 𝜉𝑖 , 

                      𝑥𝑖~𝑈[−4𝜋, 4𝜋], 𝜉𝑖~𝑁(0,0. 5
2).                (33) 

The dataset consists of 200 training samples and 400 test 

samples. Figure 2 illustrates the estimated functions obtained 

by these four methods and Table 4 shows the corresponding 

performance. These results also demonstrate the superiority of 

our method. At the bottom of Table 4, we list the average ranks 

of all four methods on the artificial datasets for different 
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performance metrics. It can be seen that our 𝑣 -MADR is 

superior to other three methods on 𝑅2  and NMSE, and is 

comparable to LS-SVR and 𝜀-TSVR in terms of MAPE. 

 
(a) 𝑣-SVR                                                                                     (b) LS-SVR 

 
(c) 𝜀-TSVR                                                                                  (d) 𝑣-MADR 

FIGURE 1.  The predictions of 𝒗-SVR, LS-SVR, 𝜺-TSVR and our 𝒗-MADR on function 𝒚 = 𝒙
𝟐

𝟑. 

 

 
  (a) 𝑣-SVR                                                                                        (b) LS-SVR 

 

     (c) 𝜀-TSVR                                                                                       (d) 𝑣-MADR 

FIGURE 2.  The predictions of 𝒗-SVR, LS-SVR, 𝜺-TSVR and our 𝒗-MADR on the sinc function. 
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TABLE 4 

THE RESULT COMPARISONS OF 𝒗-SVR, LS-SVR, 𝜺-TSVR AND OUR 𝒗-MADR ON ARTIFICIAL DATASETS. 

Dataset regressor 𝑅2 (rank) NMSE (rank) MAPE (rank) CPU(sec) 

𝑥
2
3 

𝑣-SVR 0.9319(4) 0.0856(4) 0.2479(4) 0.0333 

LS-SVR 0.9446(3) 0.0698(3) 0.2152(2) 0.0188 

𝜀-TSVR 0.9500(2) 0.0593(2) 0.2091(1) 0.0196 

𝒗-MADR 0.9584(1) 0.0529(1) 0.2165(3) 0.0471 

𝑆𝑖𝑛𝑐(𝑥) 𝑣-SVR 0.9889(2) 0.0183(2) 1.1792(4) 0.0837 

LS-SVR 0.9844(3) 0.0190(3) 0.8389(2) 0.0172 

𝜀-TSVR 0.9823(4) 0.0200(4) 0.9118(3) 0.0202 

𝒗-MADR 0.9940(1) 0.0083(1) 0.7333(1) 0.0474 

average 

rank 

𝑣-SVR 3 3 4 - 

LS-SVR 3 3 2 - 

𝜀-TSVR 3 3 2 - 

𝒗-MADR 1 1 2 - 

B. MEDIUM-SCALE DATASETS 

Table 5 and Table 6 list the experimental results on the eight 

medium-scale datasets from UCI and StatLib with RBF and 

polynomial kernels, respectively. From the average rank at the 

bottom of Table 5 and Table 6, our 𝑣-MADR is superior to the 

other three methods. In detail, on most datasets, our 𝑣-MADR 

has the highest 𝑅2, lowest NMSE and MAPE. Although on 

several datasets, such as “MachineCPU”, our 𝑣-MADR does 

not achieve the best experimental results compared with other 

methods, it is not the worst. Our 𝑣 -MADR also has good 

performance in terms of CPU running time. The above 

experimental results indicate that 𝑣-MADR is an efficient and 

promising algorithm for regression. Table 7 and Table 8 list 

the optimal parameters with RBF and polynomial kernels, 

respectively. Figure 3(a) and Figure 3(b) show the 

comparisons of CPU time among our 𝑣-MADR, 𝑣-SVR, LS-

SVR and 𝜀-TSVR on each medium-scale dataset with RBF 

kernel and polynomial kernel.  

For further evaluation, we investigate the absolute 

regression deviation mean and variance of our 𝑣-MADR with 

RBF kernel, 𝑣-SVR, LS-SVR and 𝜀-TSVR on medium-scale 

datasets as shown in Figure 4. From Figure 4, our 𝑣-MADR 

has the smallest absolute regression deviation mean and 

variance on most datasets. In addition, 𝑣-MADR also has the 

most compact mean and variance distribution, which 

demonstrates its robustness. From the above results, it is 

obvious that our 𝑣-MADR outperforms other three methods. 

The change of parameter values may have a great effect on 

the results of regression analysis. For our RBF kernel 𝑣 -

MADR, there are mainly three trade-off parameters, i.e., 𝜆1, 

𝜆2, 𝐶 and one kernel parameter 𝜎. Figure 5(a) and Figure 5(b) 

shows the influence of 𝜆1 on NMSE and CPU time by varying 

it from 2−9 to 29 while fixing 𝜆2, 𝐶 and 𝜎 as the optimal ones 

by cross validation. Figures 5(c)~5(h) show the influence of 

𝜆2, 𝐶 and 𝜎 on NMSE and CPU time, respectively. As one 

can see from Figure 5(a), Figure 5(c) and Figure 5(e), the 

NMSE values on medium-scale datasets do not change 

significantly when the values of the three parameters 𝜆1, 𝜆2, 

and 𝐶 are changed. Figure 5(g) shows that 𝜎 has more obvious 

influence on NMSE. On most datasets, as 𝜎 becomes larger, 

NMSE will become smaller and smaller until it converges at a 

fixed value. Figure 5(b), Figure 5(d), Figure 5(f) and Figure 

5(h) show the influence of parameters 𝜆1, 𝜆2, 𝐶 and 𝜎 on CPU 

time. Experimental results indicate that the performance of 𝑣-

MADR is not sensitive to parameter changes, which further 

demonstrates the robustness of 𝑣-MADR. 

TABLE 5 

THE RESULT COMPARISONS OF 𝒗-SVR, LS-SVR, 𝜺-TSVR AND 𝒗-MADR ON MEDIUM-SCALE DATASETS WITH RBF KERNEL 

Dataset regressor 𝑅2 (rank) NMSE (rank) MAPE (rank) CPU(sec) 

  Diabetes 𝑣-SVR 0.5343  0.0028(2) 0.4768  0.0024(2) 1.5971  0.0197(4) 0.009 

LS-SVR 0.5151  0.0381(4) 0.4986  0.0504(4) 1.5742  0.0477(2) 0.014 

𝜀-TSVR 0.5281  0.1182(3) 0.4805  0.1185(3) 1.5909  0.1188(3) 0.004 

𝒗-MADR 0.5891  0.0137(1) 0.4127  0.0141(1) 1.4750  0.0493(1) 0.002 

  Motorcycle 𝑣-SVR 0.7938  0.0020(3) 0.2081  0.0029(4) 1.2636  0.0352(4) 0.007 

LS-SVR 0.7975  0.0011(2) 0.2027  0.0009(3) 1.2444  0.0154(3) 0.013 

𝜀-TSVR 0.7680  0.0003(4) 0.2021  0.0003(2) 1.2441  0.0055(2) 0.012 

𝒗-MADR 0.7984  0.0006(1) 0.2017  0.0007(1) 1.2316  0.0063(1) 0.016 

Autoprice 𝑣-SVR 0.9481  0.0680(2) 0.0530  0.0698(2) 0.4187  0.1070(1) 0.004 

LS-SVR 0.9465  0.0674(3) 0.0541  0.0682(3) 0.5039  0.1392(3) 0.049 

𝜀-TSVR 0.9338  0.0744(4) 0.0665  0.0745(4) 0.5355  0.1524(4) 0.007 

𝒗-MADR 0.9549  0.0040(1) 0.0467  0.0035(1) 0.4889  0.0220(2) 0.027 

Servo 𝑣-SVR 0.9337  0.0565(4) 0.0686  0.0582(4) 0.2491  0.0420(2) 0.291 

LS-SVR 0.9630  0.0403(2) 0.0372  0.0406(2) 0.3374  0.1835(3) 0.019 
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𝜀-TSVR 0.9507  0.0445(3) 0.0495  0.0446(3) 0.3931  0.2082(4) 0.016 

𝒗-MADR 0.9755  0.0187(1) 0.0253  0.0320(1) 0.2473  0.1280(1) 0.045 

 Wisconsin 𝑣-SVR 0.2420  0.0354(3) 0.7712  0.0371(3) 1.8255  0.1265(4) 0.008 

LS-SVR 0.2546  0.0146(2) 0.7574  0.0202(2) 1.5667  0.0462(1) 0.086 

𝜀-TSVR 0.2285  0.0130(4) 0.7752  0.0137(4) 1.7028  0.1055(3) 0.027 

𝒗-MADR 0.2641  0.0016(1) 0.7486  0.0012(1) 1.5840  0.0125(2) 0.046 

MachineCPU 𝑣-SVR 0.9994  0.0005(1) 0.0006  0.0006(1) 0.0888  0.1165(1) 0.006 

LS-SVR 0.9978  0.0020(2) 0.0022  0.0020(2) 0.1775  0.1113(2) 0.027 

𝜀-TSVR 0.9921  0.0048(4) 0.0080  0.0048(4) 0.3580  0.1641(4) 0.034 

𝒗-MADR 0.9942  0.0014(3) 0.0063  0.0017(3) 0.2134  0.0779(3) 0.047 

 AutoMpg 𝑣-SVR 0.9196  0.0108(4) 0.0807  0.0121(4) 1.0111  0.2842(2) 0.118 

LS-SVR 0.9262  0.0072(2) 0.0741  0.0079(2) 1.0196  0.0977(3) 0.054 

𝜀-TSVR 0.9228  0.0034(3) 0.0773  0.0035(3) 1.0549  0.0421(4) 0.105 

𝒗-MADR 0.9267  0.0017(1) 0.0736  0.0015(1) 1.0080  0.0182(1) 0.326 

 WDBC 𝑣-SVR 0.9382  0.0106(3) 0.0632  0.0086(3) 0.0988  0.0041(3) 0.216 

LS-SVR 0.9520  0.0109(2) 0.0489  0.0113(2) 0.0182  0.0052(1) 0.196 

𝜀-TSVR 0.9344  0.0066(4) 0.0659  0.0047(4) 0.1726  0.0085(4) 0.615 

𝒗-MADR 0.9710  0.0258(1) 0.0298  0.0198(1) 0.0714  0.0043(2) 0.913 

average rank 𝑣-SVR 2.7500 2.8750 2.6250 - 

LS-SVR 2.3750 2.5000 2.2500 - 

𝜀-TSVR 3.6250 3.3750 3.5000 - 

𝒗-MADR 1.2500 1.2500 1.6250 - 

TABLE 6 

THE RESULT COMPARISONS OF 𝒗-SVR, LS-SVR, 𝜺-TSVR AND 𝒗-MADR ON MEDIUM-SCALE DATASETS WITH POLYNOMIAL KERNEL 

Dataset regressor 𝑅2 (rank) NMSE (rank) MAPE (rank) CPU(sec) 

Diabetes 𝑣-SVR 0.371  0.0931(4) 0.6424  0.1007(4) 1.2135  0.5799(2) 0.001 

LS-SVR 0.526  0.0096(2) 0.4901  0.0313(3) 1.4929  0.1274(3) 0.012 

𝜀-TSVR 0.525  0.0063(3) 0.4846  0.0214(2) 1.6795  0.1074(4) 0.004 

𝒗-MADR 0.549  0.0324(1) 0.4834  0.0317(1) 1.1254  0.0465(1) 0.002 

Motorcycle 𝑣-SVR 0.115  0.0106(4) 0.8898  0.0103(4) 1.2730  0.1945(1) 0.001 

LS-SVR 0.547  0.0024(3) 0.4544  0.0055(3) 1.6929  0.0356 (4) 0.014 

𝜀-TSVR 0.548  0.0010(2) 0.4540  0.0042(2) 1.6771  0.0540 (3) 0.032 

𝒗-MADR 0.549  0.0006(1) 0.4516  0.0028(1) 1.6456  0.0315 (2) 0.017 

Autoprice 𝑣-SVR 0.881  0.0433(4) 0.1217  0.0551(4) 0.6501  0.1275(4) 0.004 

LS-SVR 0.965  0.0109(3) 0.0349  0.0113(3) 0.4184  0.0446(2) 0.043 

𝜀-TSVR 0.973  0.0082(2) 0.0315  0.0152(2) 0.4750  0.1303(3) 0.017 

𝒗-MADR 0.976  0.0108(1) 0.0256  0.0115(1) 0.4056  0.0772(1) 0.025 

Servo 𝑣-SVR 0.545  0.0034(4) 0.4905  0.0079(4) 0.8068  0.0122(4) 0.016 

LS-SVR 0.935  0.0385(3) 0.0645  0.0384(3) 0.4870  0.1473(3) 0.020 

𝜀-TSVR 0.942  0.0012(2) 0.0576  0.0017(1) 0.4856  0.0112(2) 0.019 

𝒗-MADR 0.945  0.0047(1) 0.0631  0.0066(2) 0.4425  0.1647(1) 0.083 

Wisconsin 𝑣-SVR 0.203  0.0227(4) 0.8326  0.0357(4) 1.3011  0.0160(2) 0.007 

LS-SVR 0.469  0.0021(3) 0.5692  0.0092(3) 1.3614  0.0036(3) 0.095 

𝜀-TSVR 0.777  0.0020(1) 0.2439  0.0336(1) 1.3793  0.1926(4) 0.039 

𝒗-MADR 0.585  0.0013(2) 0.4577  0.0066(2) 0.8205  0.0081(1) 0.041 

MachineCPU 𝑣-SVR 0.933  0.0175(4) 0.0682  0.0171(4) 1.3525  0.2995(4) 0.015 

LS-SVR 0.999  0.0008(3) 0.0006  0.0009(3) 0.1068  0.0696(2) 0.029 

𝜀-TSVR 0.999  0.0004(2) 0.0005  0.0005(2) 0.1159  0.0503(3) 0.021 

𝒗-MADR 0.999  0.0002(1) 0.0004  0.0003(1) 0.0916  0.0251(1) 0.045 

AutoMpg 𝑣-SVR 0.802  0.0127(4) 0.1997  0.0136(4) 1.2530  0.2663(2) 0.080 

LS-SVR 0.895  0.0307(2) 0.1047  0.0309(2) 1.2613  0.2146(3) 0.047 

𝜀-TSVR 0.892  0.0396(3) 0.1079  0.0356(3) 1.3668  0.0156(4) 0.143 

𝒗-MADR 0.922  0.0131(1) 0.0815  0.0154(1) 1.1219  0.2950(1) 0.298 
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WDBC 𝑣-SVR 0.471  0.0198(4) 0.5494  0.0537(4) 0.7195  0.0166(4) 0.061 

LS-SVR 0.921  0.0202(2) 0.0812  0.0211(2) 0.0318  0.0094(1) 0.177 

𝜀-TSVR 0.902  0.0132(3) 0.0977  0.0124(3) 0.2362  0.0198(3) 0.360 

𝒗-MADR 0.980  0.0157(1) 0.0202  0.0062(1) 0.0510  0.0251(2) 1.112 

average rank 𝑣-SVR 4.0000 4.0000 2.8750 - 

LS-SVR 2.6250 2.7500 2.6250 - 

𝜀-TSVR 2.2500 2.0000 3.2500 - 

𝒗-MADR 1.1250 1.2500 1.2500 - 

TABLE 7 
THE OPTIMAL PARAMETERS ON MEDIUM-SCALE DATASETS WITH RBF KERNEL 

Dataset 𝑣-SVR LS-SVR 𝜀-TSVR 𝑣-MADR 

𝐶 𝜎 𝐶 𝜎 𝑐1 = 𝑐2 𝑐3 = 𝑐4 𝜎 𝐶 𝜆1 = 𝜆2 𝜎 

Diabetes 29 2-4 27 24 2-4 2-3 2-2 25 27 2-3 

Motorcycle 29 20 24 2-2 2-8 2-6 21 29 29 21 

Autoprice 29 2-8 28 2-6 2-6 2-9 2-6 2-9 29 2-6 

Servo 26 2-1 29 21 2-9 2-9 2-2 2-7 29 20 

Wisconsin 22 2-9 22 29 2-5 22 2-7 2-1 26 2-9 

MachineCPU 28 2-9 29 28 2-7 2-9 2-8 2-9 29 2-7 

AutoMpg 23 2-3 24 22 2-5 2-7 2-3 2-5 29 2-3 

WDBC 22 2-5 23 24 2-5 2-6 2-5 2-9 29 2-4 

TABLE 8 

THE OPTIMAL PARAMETERS ON MEDIUM-SCALE DATASETS WITH POLYNOMIAL KERNEL 

Dataset 𝑣-SVR LS-SVR             𝜀-TSVR  𝑣-MADR 

𝐶 𝑑 𝐶 𝑑 𝑐1 = 𝑐2 𝑐3 = 𝑐4 𝑑 𝐶 𝜆1 = 𝜆2 𝑑 

Diabetes 2-1 3 2-4 2 2-3 28 2 29 2-5 4 

Motorcycle 2-3 2 2-3 6 2-5 27 6 2-4 24 6 

Autoprice 2-1 3 2-5 2 2-3 23 2 2-1 23 2 

Servo 22 3 2-6 5 2-9 25 4 2-3 2-4 5 

Wisconsin 2-3 3 2-9 2 2-1 29 2 29 2-9 3 

MachineCPU 20 2 2-2 2 2-8 2-1 2 2-3 2-9 2 

AutoMpg 22 3 2-4 3 2-2 29 2 2-3 22 3 

WDBC 2-3 3 2-7 2 2-5 24 2 29 2-3 4 

 

                  (a) CPU time on medium-scale datasets with RBF kernel               (b) CPU time on medium-scale datasets with polynomial kernel 

FIGURE 3.  The CPU time on medium-scale datasets. 

 
(a) Diabetes                 (b) Motorcycle 
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(c) Autoprice                 (d) Servo 

 

(e) Wisconsin                 (f) MachineCPU 

 

(g) AutoMpg                 (h) WDBC 

FIGURE 4.  The absolute regression deviation mean and variance of 𝒗-MADR with RBF kernel on medium-scale datasets. 

 
(a) Influence of parameter 𝜆1 on NMSE        (b) Influence of parameter 𝜆1 on time 
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(c) Influence of parameter 𝜆2 on NMSE        (d) Influence of parameter 𝜆2 on time 

 

(e) Influence of parameter 𝐶 on NMSE        (f) Influence of parameter 𝐶 on time 

 

(g) Influence of parameter 𝜎 on NMSE        (h) Influence of parameter 𝜎 on time 

FIGURE 5.  Parameter influence on NMSE and CPU time on medium-scale datasets with RBF kernel. 

C. LARGE-SCALE DATASETS 

Table 9 lists the experimental results on six large-scale 

datasets with linear kernel. We have additionally added a 

comparison of linear 𝜀 -SVR, which was solved by 

LIBLINEAR [50] that can handle large-scale datasets. In this 

experiment, because the datasets are too large, for each dataset, 

2/3 of the dataset is randomly selected as the training set for 

feature selection, and the rest 1/3 of the dataset is used as the 

test set for evaluation. From the average rank at the bottom of 

Table 9, the overall performance of 𝑣-MADR is better than 

other compared methods or is highly competitive. The optimal 

parameters are listed in Table 10. Figure 6 shows the 

comparisons of CPU time. From Figure 6, linear kernel 𝑣-

MADR is the fastest learning method. In particular, the CPU 

time of linear kernel 𝑣-MADR is far superior to 𝑣-SVR, LS-

SVR and 𝜀-TSVR. 

TABLE 9 

THE RESULT COMPARISONS OF 𝒗-SVR, LS-SVR, 𝜺-TSVR, 𝜺-SVR AND 𝒗 -MADR ON LARGE-SCALE DATASETS WITH LINEAR KERNEL 

Dataset regressor 𝑅2 (rank) NMSE (rank) MAPE (rank) CPU(sec) 

ConcreteCS 𝑣-SVR 0.5849  0.0511(4) 0.4180  0.0535(4) 2.1691  0.4274(4) 2.1470 

LS-SVR 0.6030  0.0440(2) 0.4033  0.0504(2) 2.0463  0.6259(2) 0.1371 

𝜀-TSVR 0.5934  0.0483(3) 0.4076  0.0476(3) 2.0746  0.5095(3) 0.6757 

LIBLINEAR  0.3945  0.0493(5) 0.7194  0.1146(5) 3.9093  2.1885(5) 0.0040 

𝒗-MADR 0.6124  0.0251(1) 0.3925  0.0278(1) 1.8771  0.6436(1) 0.0024 

Abalone 𝑣-SVR 0.5237  0.0399(3) 0.4838  0.0403(3) 3.3437  0.3106(2) 73.7317 

LS-SVR 0.5103  0.0345(4) 0.4921  0.0351(4) 3.4757  0.4091(5) 1.7781 

𝜀-TSVR 0.5310  0.0267(2) 0.4712  0.0286(2) 3.4732  0.2775(4) 14.2850 

LIBLINEAR  0.3605  0.0295(5) 0.6708  0.0586(5) 3.3933  0.6411(3) 0.0337 

𝒗-MADR 0.5491  0.0322(1) 0.4569  0.0370(1) 3.2690  0.2572(1) 0.0065 

CPUsmall 𝑣-SVR 0.6918  0.0371(5) 0.3120  0.0398(5) 4.8450  0.8492(2) 0.7953 

LS-SVR 0.7140  0.0185(3) 0.2882  0.0192(2) 6.0237  1.3026(5) 10.8428 

𝜀-TSVR 0.7160  0.0285(2) 0.2994  0.0627(4) 5.6246  1.0662(3) 40.5285 

LIBLINEAR  0.8579  0.0320(1) 0.2138  0.0367(1) 1.0918  0.3100(1) 0.0626 

𝑣-MADR 0.7107  0.0251(4) 0.2928  0.0281(3) 5.8786  0.5713(4) 0.0183 

Bike 𝑣-SVR 0.3054  0.0237(4) 0.7102  0.0418(4) 2.0073  0.2880(1) 33.9155 

LS-SVR 0.3116  0.0108(2) 0.6887  0.0109(2) 2.1121  0.2953(3) 20.2850 
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𝜀-TSVR 0.3088  0.0160(3) 0.6916  0.0167(3) 2.1389  0.3706(4) 60.5827 

LIBLINEAR  0.1456  0.0249(5) 1.2910  0.0973(5) 4.5741  0.4089(5) 0.0725 

𝒗-MADR 0.3124  0.0101(1) 0.6879  0.0112(1) 2.0562  0.3886(2) 0.0200 

Driftdataset 𝑣-SVR 0.5838  0.0294(4) 0.4223  0.0341(3) 0.6057  0.0099(4) 58.8105 

LS-SVR 0.4904  0.2335(5) 0.6566  0.4629(5) 0.5328  0.0617(1) 105.9514 

𝜀-TSVR 0.6018  0.0916(3) 0.4035  0.0959(2) 0.5932  0.0931(2) 182.7503 

LIBLINEAR  0.6219  0.0285(1) 0.4270  0.0174(4) 0.7941  0.0161(5) 1.5930 

𝒗-MADR 0.6145  0.0946(2) 0.3980  0.0456(1) 0.5966  0.0461(3) 0.6395 

Cadate 𝑣-SVR 0.6179  0.0138(3) 0.3845  0.0162(3) 2.3677  0.3229(3) 49.4465 

LS-SVR N/A(5) N/A(5) N/A(5) N/A 

𝜀-TSVR 0.6204  0.0061(2) 0.3799  0.0062(2) 2.3034  0.1976(2) 304.7820 

LIBLINEAR  0.4728  0.0132(4) 0.8760  0.0356(4) 5.0565  1.6076(4) 0.1007 

𝒗-MADR 0.6207  0.0158(1) 0.3795  0.0169(1) 2.1349  0.3066(1) 0.0356 

average rank 

 

 

𝑣-SVR 3.8333 3.6667 2.6667 - 

LS-SVR 3.5000 3.3333 3.5000 - 

𝜀-TSVR 2.5000 2.6667 3.0000 - 

LIBLINEAR  3.5000 4.0000 3.8333 - 

𝒗-MADR 1.6667 1.3333 2.0000 - 

TABLE 10 

THE OPTIMAL PARAMETERS ON LARGE-SCALE DATASETS WITH LINEAR KERNEL.  

Dataset 

 

𝑣-SVR LS-SVR 𝜀-TSVR LIBLINEAR 𝑣-MADR 

𝐶 𝐶 𝑐1 = 𝑐2 𝑐3 = 𝑐4 𝐶 𝐶 𝜆1 𝜆2 

ConcreteCS 27 21 2-3 21 2-9 29 2-2 2-5 

Abalone 29 29 2-3 2-1 2-5 29 2-8 23 

CPUsmall 2-8 2-6 2-9 27 2-4 29 2-8 25 

Bike 25 2-5 2-9 24 2-9 29 24 23 

Driftdataset 2-9 2-6 2-7 27 28 23 2-5 2-9 

Cadate 23 N/A 2-7 25 21 29 2-1 2-7 

 

                      (a) CPU time on large datasets with linear kernel                 (b) A closer look at the CPU time in the range of [0,0.7] sec on large datasets 

FIGURE 6.  The CPU time on large datasets with linear kernel. 

 

V.  CONCLUSIONS 

In this research, we introduce statistical information into 𝑣-

SVR and propose a novel SVR method called 𝑣-MADR. 𝑣-

MADR improves the performance of SVR and overcomes the 

limitations of existing SVR algorithms by minimizing both the 

absolute regression deviation mean and the absolute 

regression deviation variance, which takes into account both 

the positive and negative values of the regression deviation of 

sample points. 𝑣-MADR proposes a dual coordinate descent 

(DCD) algorithm for small sample problems, and we also 

propose an averaged stochastic gradient descent (ASGD) 

algorithm for large-scale problems, which greatly reduces the 

computational complexity and thus improves the algorithm 

speed. We provide a theoretical analysis on the boundary of 

the expectation of error for 𝑣-MADR. Experimental results 

have shown that 𝑣 -MADR outperforms several regression 

methods and demonstrates great application potential. Our 𝑣-

MADR Matlab codes can be accessed from: 

https://github.com/AsunaYY/v-MADR. 

In the near future, we will further investigate the potential 

of 𝑣-MADR for big data problems, e.g., predictive analysis for 

bioinformatics and systems biology problems, and problems 

in finance. We envision a great application potential in these 

problems. 
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