
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2992703, IEEE Access

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

An Efficient 𝒗-minimum Absolute Deviation
Distribution Regression Machine

Yan Wang 1, Yao Wang 1, Yingying Song 1, Xuping Xie 1, Lan Huang 1,2*, Wei Pang 3,4*,
George M. Coghill 4

1 Key Laboratory of Symbol Computation and Knowledge Engineering, Ministry of Education, College of Computer Science and Technology, Jilin

University. Changchun, 130012, P. R. China
2 Zhuhai Laboratory of Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Department of Computer

Science and Technology, Zhuhai College of Jilin University, Zhuhai, 519041, China
3 School of Mathematical and Computer Sciences, Heriot-Watt University, EH14 4AS, United Kingdom
4 Department of Computing Science, University of Aberdeen, AB24 3UE, United Kingdom

Corresponding authors: Lan Huang(huanglan@jlu.edu.cn); Wei Pang(w.pang@hw.ac.uk)

This research was funded by the National Natural Science Foundation of China (Nos. 61702214, 61772227), the Development Project

of Jilin Province of China (Nos 20180414012GH, 20180201045GX, 2020C003), Guangdong Key Project for Applied Fundamental
Research (Grant 2018KZDXM076). This work was also supported by Jilin Provincial Key Laboratory of Big Date Intelligent Computing
(No. 20180622002JC).

ABSTRACT Support Vector Regression (SVR) and its variants are widely used regression algorithms, and

they have demonstrated high generalization ability. This research proposes a new SVR-based regressor: 𝑣-

minimum absolute deviation distribution regression (𝑣-MADR) machine. Instead of merely minimizing

structural risk, as with 𝑣-SVR, 𝑣-MADR aims to achieve better generalization performance by minimizing

both the absolute regression deviation mean and the absolute regression deviation variance, which takes into

account the positive and negative values of the regression deviation of sample points. For optimization, we

propose a dual coordinate descent (DCD) algorithm for small sample problems, and we also propose an

averaged stochastic gradient descent (ASGD) algorithm for large-scale problems. Furthermore, we study the

statistical property of 𝑣-MADR that leads to a bound on the expectation of error. The experimental results on

both artificial and real datasets indicate that our 𝑣-MADR has significant improvement in generalization

performance with less training time compared to the widely used 𝑣-SVR, LS-SVR, 𝜀-TSVR, and linear 𝜀-

SVR. Finally, we open source the code of 𝑣-MADR at https://github.com/AsunaYY/v-MADR for wider

dissemination.

INDEX TERMS 𝑣-Support vector regression, absolute regression deviation mean, absolute regression

deviation variance, dual coordinate descent algorithm.

I. INTRODUCTION

Support vector regression (SVR) [1-3] has been widely used

in machine learning, since it can achieve better structural risk

minimization. SVR realizes linear regression mainly by

constructing linear decision functions in high dimensional

space. Compared with other regression methods, such as least

square regression [4], Neural Networks (NN) regression [5],

logistic regression [6], and ridge regression [7], SVR has

better generalization ability for regression problems [8-10]. In

recent years, there have been many studies about SVR-based

algorithms. Several SVR approaches have been developed,

such as 𝜀 -support vector regression (𝜀 -SVR) [1, 11], 𝑣 -

support vector regression (𝑣 -SVR) [12], and least square

support vector regression (LS-SVR) [13, 14]. The basic idea

of these methods is to find the decision function by

maximizing the boundaries of two parallel hyperplanes.

Different from 𝜀-SVR, 𝑣-SVR introduces another parameter,

𝑣 , to control the number of support vectors and adjust the

parameter 𝜀 automatically. The parameter 𝑣 has a certain

range of values, that is, (0,1]. When solving the quadratic

specification problem (QPP), 𝑣-SVR reduces the number of

computational parameters by half, which greatly reduces the

computational complexity. Besides, some researchers have

proposed the non-parallel planar regressors, such as twin

support vector regression (TSVR) [15], 𝜀-twin support vector

regression (𝜀-TSVR) [16], parametric-insensitive nonparallel

support vector regression (PINSVR) [17], lagrangian support

vector regression [18], and lagrangian twin support vector

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Heriot Watt Pure

https://core.ac.uk/display/323051082?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2992703, IEEE Access

VOLUME XX, 2017 2

regression (LTSVR) [19]. These algorithms demonstrate good

ability to capture data structure and boundary information.

Support vector (SV) theory indicates that maximizing the

minimum margin is not the only way to construct the

separating hyperplane for SVM. Zhang and Zhou [20-23]

proposed the large margin distribution machine (LDM), which

was designed to maximize the margin mean and minimize the

margin variance simultaneously. Gao and Zhou [23] proved

that the margin distribution including the margin mean and the

margin variance was crucial for generalization compared to a

single margin, and optimizing the margin distribution can also

naturally accommodate class imbalance and unequal

misclassification costs [21]. Inspired by the idea of LDM, Liu

et al. proposed a minimum deviation distribution regression

(MDR) [24], which introduced the statistics of regression

deviation into 𝜀-SVR. More specifically, MDR minimizes the

regression deviation mean and the regression deviation

variance while optimizing the minimum margin. In addition,

Reshma and Pritam were also inspired by the idea of LDM,

and they proposed a large-margin distribution machine-based

regression model (LDMR) and a new loss function [25, 26].

However, the definition of the deviation mean in MDR is not

very appropriate for positive and negative samples, and the

speed of 𝜀 -SVR strategy that MDR used can be further

improved.

Considering the above advances in SVR, in this research,

we introduce the statistical information into 𝑣 -SVR and

propose an 𝑣 -minimum absolute deviation distribution

regression (𝑣-MADR). We give the definition of regression

deviation mean which takes into account both the positive and

negative values of the regression deviation of sample points.

Inspired by recent theoretical results [20-24], 𝑣 -MADR

simultaneously minimizes the absolute regression deviation

mean and the absolute regression deviation variance based on

the 𝑣 -SVR strategy, thereby greatly improving the

generalization performance [21, 23]. To solve the optimization

problem, we propose a dual coordinate descent (DCD)

algorithm for small sample problems, and we also propose an

averaged stochastic gradient descent (ASGD) algorithm for

large-scale problems. Furthermore, the boundary on error

expectation of 𝑣-MADR is studied. The performance of 𝑣-

MADR is assessed on both artificial and real datasets in

comparison with other typical regression algorithms, such as

𝑣-SVR, LS-SVR, 𝜀-TSVR, and linear 𝜀-SVR. According to

previous research, SVR-based algorithms show better

generalization ability for regression problems [8-10]. In

conclusion, our experimental results demonstrate that the

proposed 𝑣-MADR can lead to better performance than other

algorithms for regression problems. The main contributions of

this paper are as follows:

1) We propose a new regression algorithm that minimizes

both the absolute regression deviation mean and the

absolute regression deviation variance, and this new

algorithm takes into account the positive and negative

values of the regression deviation of sample points.

2) We propose two optimization algorithms, i.e., the dual

coordinate descent (DCD) algorithm for small samples

problems and the averaged stochastic gradient descent

(ASGD) algorithm for large-scale problems.

3) We theoretically prove the upper bound on the

generalization error of 𝑣 -MADR and analyze the

computational complexity of our optimization

algorithms.

As SVR-based algorithms are widely used for regression

problems, 𝑣-MADR has great application potential.

The rest of this paper is organized as follows: Section 2

introduces the notations used in this paper and presents a brief

review of SVR as well as the recent progress in SV theory.

Section 3 introduces the proposed 𝑣 -MADR, including the

kernel and the bound on the expectation of error. Experimental

results are reported in Section 4, and finally, the conclusions

are drawn in Section 5.

II. BACKGROUND

Suppose 𝑫 = {(𝒙1, 𝑦1), (𝒙2, 𝑦2), … , (𝒙𝑛, 𝑦𝑛)} is a training

set of 𝑛 samples, where 𝒙𝑖 ∈ 𝝌 is the input sample in the form

of 𝑑 -dimensional vectors and 𝑦𝑖 ∈ 𝑅 is the corresponding

target value. The objective function is 𝑓(𝒙) = 𝒘𝑇𝜙(𝒙) + 𝑏,

where 𝒘 ∈ 𝑅𝑚 is the weight vector, 𝑏 ∈ 𝑅 is the bias term,

and 𝜙(𝒙) is the mapping function induced by a kernel 𝜅, i.e.,

𝜅(𝒙𝑖 , 𝒙𝑗) = 𝜙(𝒙𝑖) ⋅ 𝜙(𝒙𝑗). To reduce the complexity brought

by 𝑏, we enlarge the dimension of 𝒘 and 𝜙(𝒙𝑖) as in [27], i.e.,

𝒘 ← [𝒘, 𝑏]𝑇 , 𝜙(𝒙𝑖) ← [𝜙(𝒙𝑖), 1] . Thus, the function

𝑓(𝒙) = 𝒘𝑇𝜙(𝒙) + 𝑏 becomes the following form:

𝑓(𝒙) = 𝒘𝑇𝜙(𝒙).
In what follows, we only consider problems in the form of

the above function.

Formally, we denote 𝑿 as the matrix whose 𝑖-th column is

𝜙(𝒙𝑖), i.e., 𝑿 = [𝜙(𝒙1), … , 𝜙(𝒙𝑛)], and 𝒚 = [𝑦1, … , 𝑦𝑛]
𝑇 is

a column vector.

A. THE SVR ALGORITHMS

There are two traditional methods for solving support vector

regression (SVR) algorithms, namely 𝜀-SVR [1, 11] and 𝑣-

SVR [12]. In order to find the best fitting surface, 𝜀 -SVR

maximizes the minimum margin containing the data in the so-

called 𝜀-tube, in which the distances of the data to the fitting

hyperplane are not larger than 𝜀. Therefore, 𝜀-SVR with soft-

margin can be expressed as follows:

𝑚𝑖𝑛
𝒘,𝝃,𝝃∗

1

2
𝒘𝑇𝒘+ 𝐶(𝒆𝑇𝝃 + 𝒆𝑇𝝃∗)

 𝑠. 𝑡. 𝒚 − 𝑿𝑇𝒘 ≤ 𝜀𝒆 + 𝝃,

 𝑿𝑇𝒘− 𝒚 ≤ 𝜀𝒆 + 𝝃∗,

 𝝃, 𝝃∗ ≥ 𝟎,

where parameter 𝐶 is used for the tradeoff between the

flatness of 𝑓(𝒙) and the tolerance of the deviation larger than

𝜀 ; 𝝃 = [𝜉1, 𝜉2, … , 𝜉𝑛] and 𝝃∗ = [𝜉1
∗, 𝜉2

∗, … , 𝜉𝑛
∗] are the slack

variables measuring the distances of the training samples

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2992703, IEEE Access

VOLUME XX, 2017 3

outside the 𝜀 -tube from the 𝜀 -tube itself as soft-margin; 𝒆

stands for the all-one vector of appropriate dimensions.

The dual problem of 𝜀-SVR is formulated as

𝑚𝑖𝑛
𝜶,𝜶∗

1

2
(𝜶 − 𝜶∗)𝑇𝑸(𝜶 − 𝜶∗) + 𝜀(𝜶 + 𝜶∗) + 𝒚𝑇(𝜶 − 𝜶∗)

𝑠. 𝑡. e𝑇(𝜶 − 𝜶∗) = 0, 0 ≤ 𝛼𝑖 , 𝛼𝑖
∗ ≤ 𝐶, 𝑖 = 1,2, … , 𝑛, (1)

where 𝜶 and 𝜶∗ are the Lagrange multipliers;

𝑄𝑖𝑗 =

𝜅(𝒙𝑖 , 𝒙𝑗) = 𝜙(𝒙𝑖)
𝑇𝜙(𝒙𝑗).

In order to facilitate the calculation, Formula (1) can be

transformed as follows:

𝑚𝑖𝑛
𝜶,𝜶∗

1

2
𝜶̃𝑇 [

 Q − Q

−Q Q
] 𝜶̃ + [

𝜀𝒆 + 𝒚
𝜀𝒆 − 𝒚

]
𝑇

𝜶̃ (2)

𝑠. 𝑡. [
𝒆
−𝒆
]
𝑇

𝜶̃ = 0, 0 ≤ 𝛼̃𝑖 ≤ 𝐶, 𝑖 = 1,2, … ,2𝑛,

where 𝛂̃ = [𝛂𝑇 , 𝛂∗𝑇]𝑇.

𝑣 -SVR [12] is another commonly used algorithm for

solving SVR. Compared with 𝜀 -SVR, 𝑣 -SVR uses a new

parameter 𝑣 ∈ (0,1] to control the number of support vectors

and training errors and adjust parameter 𝜀 automatically.

According to Gu et al., the objective function 𝑓(𝒙) in 𝑣-SVR

is represented by the following constrained minimization

problem with soft-margin [28-30]:

𝑚𝑖𝑛
𝒘,𝜀,𝝃,𝝃∗

1

2
𝒘𝑇𝒘 + 𝐶 (𝑣𝜀 +

1

𝑛
(𝒆𝑇𝝃 + 𝒆𝑇𝝃∗))

 𝑠. 𝑡. 𝒚 − 𝑿𝑇𝒘 ≤ 𝜀𝒆 + 𝝃,
 𝑿𝑇𝒘− 𝒚 ≤ 𝜀𝒆 + 𝝃∗,
 𝝃, 𝝃∗ ≥ 𝟎, 𝜀𝒆 ≥ 𝟎.

The dual problem of 𝑣-SVR is

𝑚𝑖𝑛
𝜶,𝜶∗

1

2
(𝜶 − 𝜶∗)𝑇𝑸(𝜶 − 𝜶∗) + 𝒚𝑇(𝜶 − 𝜶∗)

𝑠. 𝑡. e𝑇(𝜶 − 𝜶∗) = 0, e𝑇(𝜶 + 𝜶∗) ≤ 𝐶𝑣,

0 ≤ 𝛼𝑖 , 𝛼𝑖
∗ ≤

𝐶

𝑛
, 𝑖 = 1,2, … , 𝑛.

According to Chang et al. and Crisp et al., the inequality

eT(𝛂 + 𝛂∗) ≤ 𝐶𝑣 in 𝑣-SVR can be replaced by the equality

form of eT(𝛂 + 𝛂∗) = 𝐶𝑣 with the constraint 0 < 𝑣 ≤ 1 [11,

31], so we have

 𝑚𝑖𝑛
𝜶,𝜶∗

1

2
(𝜶 − 𝜶∗)𝑇𝑸(𝜶 − 𝜶∗) + 𝒚𝑇(𝜶 − 𝜶∗) (3)

𝑠. 𝑡. e𝑇(𝜶 − 𝜶∗) = 0, e𝑇(𝜶 + 𝜶∗) = 𝐶𝑣,

 0 ≤ 𝛼𝑖 , 𝛼𝑖
∗ ≤

𝐶

𝑛
, 𝑖 = 1,2, … , 𝑛.

We substitute the equation 𝜶∗ = 𝐶𝑣𝒆 − 𝜶 into Formula (3),

and Formula (3) can be written as follows:

𝑚𝑖𝑛
𝜶

1

2
(2𝜶 − 𝐶𝑣𝒆)𝑇𝑸(2𝜶 − 𝐶𝑣𝒆) + 𝒚𝑇(2𝜶 − 𝐶𝑣𝒆) (4)

𝑠. 𝑡. e𝑇(2𝜶 − 𝐶𝑣𝒆) = 0,

0 ≤ 𝛼𝑖 ≤
𝐶

𝑛
, 𝑖 = 1,2, … , 𝑛.

As one can see from Formula (2) and (4), by substituting the

equation 𝜶∗ = 𝐶𝑣𝒆 − 𝜶 into the dual problem, the number of

computational parameters of the 𝑣-SVR has been reduced by

half compared to 𝜀 -SVR when solving the QPP. The

difference in both time complexity and spatial complexity

between 𝜀-SVR and 𝑣-SVR can be expressed as follows:

𝑂(𝜀 − SVR)

𝑂(𝑣 − SVR)
= 𝑂 (

Formula(2)

Formula(4)
) = 𝑂 (

2𝑛 ∗ 2𝑛

𝑛 ∗ 𝑛
) = 4.

B. RECENT PROGRESS IN SV THEORY

Recent SV theory indicates that maximizing the minimum

margin is not the only way to construct the separating

hyperplane for SVR, because it does not necessarily lead to

better generalization performance [20]. There may exist the

so-called data piling problem in SVR [32], that is, the

separating hyperplane produced by SVR tends to maximize

data piling, which makes the data pile together when they are

projected onto the hyperplane. If the distribution of the

boundary data is different from that of the internal data, the

hyperplane constructed by SVR will be inconsistent with the

actual data distribution, which reduces the performance of

SVR.

Fortunately, Gao and Zhou have demonstrated that

marginal distribution was critical to the generalization

performance [23]. By using the margin mean and the margin

variance, the model is robust to different distributions of

boundary data and noise. Inspired by the above research,

MDR [24] introduced the statistics of deviation into 𝜀-SVR

and this allows more data to have impact on the construction

of the hyperplane.

In MDR, the regression deviation of sample (𝒙𝑖 , 𝑦𝑖) is

formulated as

 𝛾𝑖 = 𝑦𝑖 − 𝑓(𝒙𝑖), ∀𝑖 = 1,… , 𝑛. (5)

So, the regression deviation mean is

𝛾̄ =
1

𝑛
∑𝛾𝑖

𝑛

𝑖=1

=
1

𝑛
∑(𝑦𝑖 − 𝑓(𝒙𝑖))

𝑛

𝑖=1

=
1

𝑛
𝒆𝑇(𝒚 − 𝑿𝑇𝒘),

and the regression deviation variance is defined as

𝛾2 = (
1

𝑛
√∑∑[𝑦𝑖 − 𝑓(𝒙𝑖) − 𝑦𝑗 + 𝑓(𝒙𝑗)]

2
𝑛

𝑗=1

𝑛

𝑖=1

)

2

 =
1

𝑛2
{2[𝒘𝑇𝑿(𝑛𝑰 − 𝒆𝒆𝑇)𝑿𝑇𝒘− 2𝒚𝑇(𝑛𝑰 − 𝒆𝒆𝑇)𝑿𝑇𝒘

+ 𝒚𝑇(𝑛𝑰 − 𝒆𝒆𝑇)𝒚]}.

MDR minimizes the regression deviation mean and the

regression deviation variance simultaneously, so we have the

following primal problem of soft-margin MDR:

http://ss.zhizhen.com/s?sw=author%28Crisp%29

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2992703, IEEE Access

VOLUME XX, 2017 4

 𝑚𝑖𝑛
𝒘,𝝃,𝝃∗

1

2
𝒘𝑇𝒘+ 𝜆1𝛾

2 + 𝜆2𝛾̄
2 + 𝐶(𝒆𝑇𝝃 + 𝒆𝑇𝝃∗)

 𝑠. 𝑡. 𝒚 − 𝑿𝑇𝒘 ≤ 𝜀𝒆 + 𝝃,
 𝒘 − 𝒚 ≤ 𝜀𝒆 + 𝝃∗,
 𝝃, 𝝃∗ ≥ 𝟎,

where 𝜆1 and 𝜆2 are the parameters for trading-off the

regression deviation variance, the regression deviation mean

and the model complexity.

Here, we can see from Equation (5) that the regression

deviation, 𝛾𝑖, is positive when the sample (𝒙𝑖 , 𝑦𝑖) lies above

the regressor and negative when the sample (𝒙𝑖 , 𝑦𝑖) lies under

the regressor. But in fact, for regression, the regression

deviation of the sample (𝒙𝑖 , 𝑦𝑖) is the distance between the

actual value and the estimated one, that is, 𝛾𝑖 = |𝑦𝑖 −
𝑓(𝒙𝑖)|, ∀𝑖 = 1,… , 𝑛. Therefore, the definition of the

deviation mean in MDR here is not very appropriate.

On the other hand, when solving QPP, MDR uses the 𝜀-

SVR strategy, and it needs to calculate 2𝑛 (𝑛 is the number of

training samples) parameters. Calculating a large number of

parameters will increase the computational complexity and

reduce the speed of the algorithm. Considering this, in the

remainder of this paper, we will introduce our latest advances

in SV theory and address the limitations of 𝜀-SVR strategy.

III. 𝒗-MININUM ABSOLUTE DEVIATION DISTRIBUTION
REGRESSION

In this section, we first formulate the absolute deviation

distribution which takes into account the positive and negative

values of the regression deviation of samples. Then we give

the optimization algorithms and the theoretical proof.

A. FORMULATION OF 𝒗-MADR

The two most straightforward statistics for characterizing the

absolute deviation distribution are the mean and the variance

of absolute deviation. In regression problems, the absolute

regression deviation of sample (𝒙𝑖 , 𝑦𝑖) is formulated as

 𝜑𝑖 = |𝑦𝑖 − 𝑓(𝒙𝑖)|, ∀𝑖 = 1,… , 𝑛. (6)

𝜑𝑖 is actually the distance between the actual value of the

sample (𝒙𝑖 , 𝑦𝑖) and the estimated one. According to the

definition in Equation (6), we give the definitions of statistics

of absolute deviation in regression.

Definition 1. Absolute regression deviation mean is defined

as follows:

 𝜑̄ =
1

𝑛
∑𝜑𝑖

2

𝑛

𝑖=1

=
1

𝑛
∑|𝑦𝑖 − 𝑓(𝒙𝑖)|

2

𝑛

𝑖=1

 =
1

𝑛
(𝒘𝑇𝑿𝑿𝑇𝒘 − 2𝒚𝑇𝑿𝑇𝒘+ 𝒚𝑇𝒚). (7)

The absolute regression deviation mean actually represents

the expected value of difference between the actual values of

data and the estimated ones. In order to facilitate the

calculation, we have done a square process in this definition.

In fact, we can view the absolute regression deviation mean as

the adjusted distances of data to their fitting hyperplane. Next,

we give the concept of the absolute regression deviation

variance as follows:

Definition 2. Absolute regression deviation variance is

defined as follows:

𝜑̂ = (
1

𝑛
√∑∑|𝑦𝑖 − 𝑓(𝒙𝑖) − 𝑦𝑗 + 𝑓(𝒙𝑗)|

2
𝑛

𝑗=1

𝑛

𝑖=1

)

2

 =
2

𝑛2
[𝒘𝑇𝑿(𝑛𝑰 − 𝒆𝒆𝑇)𝑿𝑇𝒘− 2𝒚𝑇(𝑛𝑰 − 𝒆𝒆𝑇)𝑿𝑇𝒘+

 𝒚𝑇(𝑛𝑰 − 𝒆𝒆𝑇)𝒚]. (8)

We can see that the absolute regression deviation variance

quantifies the scatter of regression.

Existing SVR’s loss is calculated only if the absolute value

of the difference between the actual data and the estimated

values is greater than a threshold. The fitting hyperplane

constructed by SVR is only affected by the distribution of the

boundary data. If the distribution of the boundary data largely

deviates from that of the internal data, the hyperplane

constructed will be inconsistent with the actual overall data

distribution. To overcome this issue, 𝑣-MADR aims to obtain

a tradeoff between the distribution of the boundary data and

that of the internal data. This means that the fitting hyperplane

constructed by 𝑣 -MADR is not only determined by the

distribution of the boundary data, but also measures the

influence of the overall data distribution on the fitting

hyperplane by simultaneously minimizing the absolute

regression deviation mean and the absolute regression

deviation variance, which is closer to the real distribution for

many datasets and is more robust to noise.

Therefore, similar to the soft-margin of 𝑣-SVR [28], the

final optimization problem considering the soft-margin has

the following form:

 𝑚𝑖𝑛
𝒘,𝜀,𝝃,𝝃∗

1

2
𝒘𝑇𝒘+ 𝜆1𝜑̂ + 𝜆2𝜑̄ + 𝐶 (𝑣𝜀 +

1

𝑛
(𝒆𝑇𝝃 + 𝒆𝑇𝝃∗))

 𝑠. 𝑡. 𝒚 − 𝑿𝑇𝒘 ≤ 𝜀𝒆 + 𝝃, (9)

 𝑿𝑇𝒘 − 𝒚 ≤ 𝜀𝒆 + 𝝃∗,
 𝝃, 𝝃∗ ≥ 𝟎,
 𝜀𝒆 ≥ 𝟎,

where parameters 𝜆1 and 𝜆2 are aimed at achieving the

tradeoff among the absolute regression deviation mean, the

absolute regression deviation variance and the model

complexity. It is evident that the soft-margin 𝑣 -MADR

subsumes the soft-margin 𝑣-SVR when 𝜆1 and 𝜆2 both equal

0. The meanings of the other variables have been introduced

in previous formula.

B. ALGORITHMS FOR 𝒗-MADR

Solving Formula (9) is a key point for 𝑣-MADR in practical

use. In this section, we first design a dual coordinate descent

(DCD) algorithm for kernel 𝑣-MADR, and then present an

average stochastic gradient descent (ASGD) algorithm for

large-scale linear kernel 𝑣-MADR.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2992703, IEEE Access

VOLUME XX, 2017 5

1) KERNEL 𝒗-MADR

By substituting the absolute regression deviation mean 𝜑̄

(Definition 1) and the absolute regression deviation variance

𝜑̂ (Definition 2) into Formula (9), we obtain Formula (10) as

follows:

𝑚𝑖𝑛
𝒘,𝜀,𝝃,𝝃∗

1

2
𝒘𝑇𝒘+𝒘𝑇𝑿(

2𝜆1 + 𝜆2
𝑛

𝑰 −
2𝜆1
𝑛2

𝒆𝒆𝑇)𝑿𝑇𝒘

 − (
4𝜆1 + 2𝜆2

𝑛
𝒚𝑇 −

4𝜆1
𝑛2

𝒚𝑇𝒆𝒆𝑇)𝑿𝑇𝒘

 +C (𝑣𝜀 +
1

𝑛
(𝒆𝑇𝝃 + 𝒆𝑇𝝃∗)) (10)

 𝑠. 𝑡. 𝒚 − 𝑿𝑇𝒘 ≤ 𝜀𝒆 + 𝝃,
 𝑿𝑇𝒘− 𝒚 ≤ 𝜀𝒆 + 𝝃∗,
 𝝃, 𝝃∗ ≥ 𝟎,
 𝜀𝒆 ≥ 𝟎 ,

The 𝐲𝐲𝑇 and 𝐲𝑇𝐞𝐞T𝐲 terms in 𝜑̄ (Definition 1) and 𝜑̂

(Definition 2) are constants in an optimization problem, so we

omit this term. However, Formula (10) is still intractable

because of the high dimensionality of 𝜙(𝒙) and its

complicated form. Inspired by [20, 33], we give the following

theorem to state the optimal solution 𝒘 for Formula (10).

Theorem 1. The optimal solution 𝒘 for Formula (10) can be

represented by the following form:

𝒘 = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝜙(𝒙𝑖)

𝑛
𝑖=1 = 𝑿(𝜶 − 𝜶∗), (11)

where 𝛂 = [𝛼1, 𝛼2, … , 𝛼𝑛]
𝑇 and 𝛂∗ = [𝛼1

∗, 𝛼2
∗, … , 𝛼𝑛

∗]𝑇 are

the parameters of 𝑣-MADR.

Proof. Suppose that 𝒘 can be decomposed into the span of

𝜙(𝒙𝑖) and an orthogonal vector, that is,

 𝒘 =∑(𝛼𝑖 − 𝛼𝑖
∗)𝜙(𝒙𝑖)

𝑛

𝑖=1

+ 𝒛 = 𝑿(𝜶 − 𝜶∗) + 𝒛,

where 𝒛 satisfies (𝜙(𝒙𝑗)
𝑇
⋅ 𝒛) = 0 for all 𝑗, that is, 𝑿𝑇𝒛 = 𝟎.

Then we obtain the following equation:

 𝑿𝑇𝒘 = 𝑿𝑇(𝑿(𝜶 − 𝜶∗) + 𝒛) = 𝑿𝑇𝑿(𝜶 − 𝜶∗). (12)

According to Equation (12), the second and the third terms

and the constraints of Formula (10) are independent of 𝒛 .

Besides, the last term of Formula (10) can also be considered

as being independent of 𝒛 . To simplify the first term of

Formula (10), and consider 𝑿𝑇𝒛 = 𝟎, we get

𝒘𝑇𝒘 = (𝑿(𝜶 − 𝜶∗) + 𝒛)𝑇(𝑿(𝜶 − 𝜶∗) + 𝒛)
 = (𝜶 − 𝜶∗)𝑇𝑿𝑇𝑿(𝜶 − 𝜶∗) + 𝒛𝑇𝒛

 ≥ (𝜶 − 𝜶∗)𝑇𝑿𝑇𝑿(𝜶 − 𝜶∗),

where the equal relationship in the above “ ≥ ” is valid if and

only if 𝒛 = 𝟎. Thus, setting 𝒛 = 𝟎 does not affect the rest of

the terms and strictly reduces the first term of Formula (10).

Based on all above, 𝒘 in Formula (10) can be represented as

the form of Equation (11). Q.E.D.

Based on Theorem 1, we have

𝑿𝑇𝒘 = 𝑿𝑇𝑿(𝜶 − 𝜶∗) = 𝑸(𝜶 − 𝜶∗),

𝒘𝑇𝒘 = (𝜶 − 𝜶∗)𝑇𝑿𝑇𝑿(𝜶 − 𝜶∗) = (𝜶 − 𝜶∗)𝑇𝑸(𝜶 − 𝜶∗),

where 𝑸 = 𝐗T𝐗 is the kernel matrix. Let 𝜶′ = (𝛂 − 𝛂∗), thus

Formula (9) leads to

𝑚𝑖𝑛
𝜶′,𝜀,𝝃,𝝃∗

1

2
(𝜶′)𝑇𝑮(𝜶′) + 𝑯𝑇𝜶′ + 𝐶 (𝑣𝜀 +

1

𝑛
(𝒆𝑇𝝃 + 𝒆𝑇𝝃∗))

 s.t. 𝒚 − Q𝜶′ ≤ 𝜀e+𝝃, (13)

 Q𝜶′ − 𝒚 ≤ 𝜀e+𝝃∗,
 𝝃, 𝝃∗ ≥ 𝟎,
 𝜀𝒆 ≥ 𝟎,

where G=Q+
4𝜆1+2𝜆2

𝑛
𝑸𝑇𝑸 −

4𝜆1

𝑛2
𝑸𝑇𝒆𝒆𝑇𝑸 and 𝑯 =

−
4𝜆1+2𝜆2

𝑛
𝑸𝑇𝒚 +

4𝜆1

𝑛2
𝑸𝑇𝒆𝒆𝑇𝒚. By introducing the Lagrange

multipliers 𝜼, 𝜼∗, 𝜷, 𝜷∗ and 𝜸, the Lagrange function of

Formula (13) is given as follows:

𝐿(𝜶′, 𝝃, 𝝃∗, 𝜀, 𝜷, 𝜷∗, 𝜼, 𝜼∗, 𝜸) =
1

2
(𝜶′)𝑇𝑮(𝜶′) + 𝑯𝑇𝜶′ +

𝐶 (𝑣𝜀 +
1

𝑛
(𝒆𝑇𝝃 + 𝒆𝑇𝝃∗)) − 𝜷𝑇(𝜀e+𝝃 − 𝒚 + Q𝜶′) −

𝜷∗𝑇(𝜀e+𝝃∗ + 𝒚 − Q𝜶′) − 𝜼𝑻𝝃 − 𝜼∗𝑇𝝃∗ − 𝜸𝑇𝜀𝒆, (14)

where 𝜷 = [𝛽1, 𝛽2, … , 𝛽𝑛]
𝑇 , 𝜷∗ = [𝛽1

∗, 𝛽2
∗, … , 𝛽𝑛

∗]𝑇 , 𝜼 =
[𝜂1, 𝜂2,…,𝜂𝑛]

𝑇 , 𝜼∗ = [𝜂1
∗, 𝜂2

∗ ,…,𝜂𝑛
∗]𝑇 , and 𝜸 =

[𝛾1, 𝛾2, … , 𝛾𝑛]
𝑇. By setting the partial derivatives {𝜶′, 𝝃, 𝝃∗, 𝜀}

to zero for satisfying the KKT conditions [34], we can get the

following equations:

𝜕𝐿

𝜕𝜶′
= 𝑮𝜶′ +𝑯− 𝑸𝑇𝜷 + 𝑸𝑇𝜷∗ = 𝟎, (15)

𝜕𝐿

𝜕𝝃
=

𝐶

𝑛
𝒆 − 𝜷 − 𝜼 = 𝟎, (16)

𝜕𝐿

𝜕𝝃∗
=

𝐶

𝑛
𝒆 − 𝜷∗ − 𝜼∗ = 𝟎, (17)

𝜕𝐿

𝜕𝜀
= 𝐶𝑣 − 𝒆𝑇𝜷 − 𝒆𝑇𝜷∗ − 𝒆𝑇𝜸 = 0. (18)

By substituting Equations (15), (16), (17) and (18) into

Equation (14), Equation (14) is re-written as:

𝑚𝑖𝑛
𝜷,𝜷∗

𝑓(𝜷, 𝜷∗) =
1

2
(𝜷 − 𝜷∗)𝑇𝑷(𝜷 − 𝜷∗) + 𝒔𝑇(𝜷 − 𝜷∗)

 𝑠. 𝑡. 𝒆𝑇(𝜷 + 𝜷∗) ≤ 𝐶𝑣, (19)

 0 ≤ 𝛽𝑖 , 𝛽𝑖
∗ ≤

𝐶

𝑛
, 𝑖 = 1,2, … , 𝑛,

where 𝑷 = 𝑸𝑮−1𝑸𝑇 and 𝒔 = −𝑸𝑮−1𝑯− 𝒚, 𝑮−1 stands for

the inverse matrix of 𝑮.

According to Chang and Lin, the inequality 𝒆𝑇(𝜶 + 𝜶∗) ≤
𝐶𝑣 in 𝑣 -SVR can be replaced by the equality form of

𝒆𝑇(𝜶 + 𝜶∗) = 𝐶𝑣 with the constraint 0 < 𝑣 ≤ 1, and there

always exists the optimal solution [11]. Based on this

conclusion, we can attain the equation for the following form:

 𝒆𝑇(𝜷 + 𝜷∗) = 𝐶𝑣. (20)

We thus substitute the equation 𝜷∗ = 𝐶𝑣𝒆 − 𝜷 into

Formula (19), and Formula (19) can be obtained as follows:

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2992703, IEEE Access

VOLUME XX, 2017 6

𝑚𝑖𝑛
𝜷
𝑓(𝜷) =

1

2
(2𝜷 − 𝐶𝑣𝒆)𝑇𝑷(2𝜷 − 𝐶𝑣𝒆) + 𝒔𝑇(2𝜷 − 𝐶𝑣𝒆)

𝑠. 𝑡. 0 ≤ 𝛽𝑖 ≤
𝐶

𝑛
, 𝑖 = 1,2, … , 𝑛. (21)

As one can see from Formula (21), by substituting the

equation 𝜷∗ = 𝐶𝑣𝒆 − 𝜷 into Formula (19), the number of

computational parameters of the 𝑣-MADR has been halved.

Due to the simple box constraint and the convex quadratic

objective function, there exist many methods to solve the

optimization problem [35-38]. To solve Formula (21), we use

the DCD algorithm [39], which continuously selects one of the

variables for minimization and keeps others as constants, thus

a closed-form solution can be achieved at each iteration. In our

situation, we minimize the variation of 𝑓(𝜷) by adjusting the

value of 𝛽𝑖 ∈ 𝜷 with a step size of 𝑡 while keeping other 𝛽𝑘≠𝑖
as constants, then we need to solve the following sub-problem:

 𝑚𝑖𝑛
𝑡
𝑓(𝜷 + 𝑡𝒅𝑖)

 𝑠. 𝑡. 0 ≤ 𝛽𝑖 + 𝑡 ≤
𝐶

𝑛
, 𝑖 = 1,2, … , 𝑛,

where 𝒅𝑖 denotes the vector with 1 in the 𝑖-th element and 0′𝑠

elsewhere. Thus, we have

 𝑓(𝜷 + 𝑡𝒅𝑖) = 𝑓(𝜷) + [𝛻𝑓(𝜷)]𝑖𝑡 + 2𝑝𝑖𝑖𝑡
2, (22)

where 𝑝𝑖𝑖 is the diagonal entry of 𝑷. Then we calculate the

gradient 𝛻𝑓(𝜷)𝑖 in Equation (22) as follows:

[𝛻𝑓(𝜷)]𝑖 = 2𝒅𝑖
𝑇𝑷(2𝜷 − 𝐶𝑣𝒆) + 2𝒔𝑇𝒅𝑖 .

As 𝑓(𝜷) is independent of 𝑡 , it can be omitted from

Equation (22). Hence 𝑓(𝜷 + 𝑡𝒅𝑖) can be transformed into a

simple quadratic function. If we denote 𝛽𝑖
𝑖𝑡𝑒𝑟 as the value of

𝛽𝑖 at the 𝑖𝑡𝑒𝑟-th iteration, 𝛽𝑖
𝑖𝑡𝑒𝑟+1 = 𝛽𝑖

𝑖𝑡𝑒𝑟 + 𝑡 is the value at

the (𝑖𝑡𝑒𝑟 + 1)-th iteration. To solve Equation (22), we can

have the minimization of 𝑡 which satisfies Equation (22) for

the following form:

𝑡 = −
[𝛻𝑓(𝜷)]𝑖
4𝑝𝑖𝑖

.

Thus, the value of 𝛽𝑖
𝑖𝑡𝑒𝑟+1 is obtained as

𝛽𝑖
𝑖𝑡𝑒𝑟+1 = 𝛽𝑖

𝑖𝑡𝑒𝑟 −
[𝛻𝑓(𝜷)]𝑖
4𝑝𝑖𝑖

.

Furthermore, considering the box constraint 0 ≤ 𝛽𝑖 ≤
𝐶

𝑛
,

we have the minimization for 𝛽𝑖
𝑖𝑡𝑒𝑟+1 as follows:

𝛽𝑖
𝑖𝑡𝑒𝑟+1 ← 𝑚𝑖𝑛(𝑚𝑎𝑥(𝛽𝑖

𝑖𝑡𝑒𝑟 −
[𝛻𝑓(𝜷𝑖𝑡𝑒𝑟)]𝑖

4𝑝𝑖𝑖
, 0), 𝐶/𝑛).

After 𝜷 converges, we can obtain 𝛂′ according to Equation

(15) and Equation (20) as follows:

𝜶′=G−1(𝑸𝑇(𝜷 − 𝜷∗) − 𝑯)=G−1(𝑸𝑇(2𝜷 − 𝐶𝑣𝒆) − 𝑯).

Thus, the final function is

𝑓(𝒙) =∑𝛼𝑖
′𝜅(𝒙𝑖 , 𝒙),

𝑛

𝑖=1

where 𝛼𝑖
′ = (𝛼𝑖 − 𝛼𝑖

∗).
Algorithm 1 summarizes the procedure of 𝑣-MADR with

the kernel functions. The initial value of 𝜷 is 𝐶𝑣𝒆 2⁄ , which

simplifies the calculation procedure of 𝑣-MADR and satisfies

Equation (20). Parameter 𝑣 is controllable and its range is

(0,1].

Algorithm 1 Dual coordinate descent solver for kernel
𝑣-MADR.

Input: Dataset 𝑿, 𝜆1, 𝜆2, 𝐶, 𝑣;
Output: 𝛂′;

Initialization: 𝜷 =
𝐶𝑣𝒆

2
, 𝛂′ =

4𝜆1+2𝜆2

𝑛
𝑮−1𝑸𝑇𝒚 −

4𝜆1

𝑛2
𝑮−1𝑸𝑇𝒆𝒆𝑇𝒚, 𝑨 = 𝑮−1𝑸𝑇 , 𝑝𝑖𝑖 = 𝒅𝑖

𝑇𝑸𝑮−1𝑸𝑇𝒅𝑖;

1: for 𝑖𝑡𝑒𝑟 = 1,2, … ,𝑚𝑎𝑥𝐼𝑡𝑒𝑟 do
2: Randomly disturb 𝜷 and then get the random index;
3: for 𝑖 = 1,2, … , 𝑛 do

4: [𝛻𝑓(𝜷)]𝑖 ← 2(𝒅𝑖
𝑇𝑸𝛂′ − 𝑦𝑖);

5: 𝛽𝑖
𝑡𝑚𝑝

← 𝛽𝑖;

6: 𝛽𝑖 ← 𝑚𝑖𝑛(𝑚𝑎𝑥(𝛽𝑖 −
[𝛻𝑓(𝜷)]𝑖

4𝑝𝑖𝑖
, 0), 𝐶/𝑛);

7: 𝛂′ ← 𝛂′ + 2(𝛽𝑖 − 𝛽𝑖
𝑡𝑚𝑝

)𝑨𝒅𝑖 ;

8: end for
9: if 𝜷 converges then
10: break;
11: end if
12: end for

We now analyze the computational complexity of

Algorithm 1 as follows:

The parameters initialization is shown in Table 1, where 𝑛

represents the number of the examples and 𝑚 represents the

number of features.
TABLE 1

TIME COMPLEXITY OF THE FORMULA

Formula being calculated
Time complexity

of the formula

𝑸 = 𝐗T𝐗 𝑛 ∗ 𝑚 ∗ 𝑛

𝑸𝒆 = 𝑸
𝑇𝒆 𝑛2

G=Q+
4𝜆1 + 2𝜆2

𝑛
𝑸𝑇𝑸 −

4𝜆1
𝑛2

𝑸𝑇𝒆𝒆𝑇𝑸 1 + 𝑛3 + 𝑛2

𝒊𝒏𝒗𝑮 = G
−𝟏 𝑛3

𝑨 = G
−1𝑸 𝑛3

𝑠𝑢𝑚𝑌 = 𝒆𝑇𝒚 𝑛

𝑯 = −(
4𝜆1 + 2𝜆2

𝑛
𝑸𝑇𝒚 −

4𝜆1
𝑛2

𝑸𝑇𝒆𝒆𝑇𝒚) 𝑛2

𝛂′ =
4𝜆1 + 2𝜆2

𝑛
𝑮−1𝑸𝑇𝒚 −

4𝜆1
𝑛2

𝑮−1𝑸𝑇𝒆𝒆𝑇𝒚

 = −𝑮−1𝑯

𝑛2

𝑷 = 𝑸𝑮−1𝑸𝑇 = 𝑸𝑨 𝑛3

The time complexity for the dual coordinate descent (DCD)

algorithm is 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 ∗ 𝑛 ∗ 𝑛, where 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 is 1000.

We can infer the time complexity of the DCD algorithm is

the sum of the above time complexity. In summary, the time

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2992703, IEEE Access

VOLUME XX, 2017 7

complexity of the DCD algorithm is 𝑂(𝑛3) and it has the

space complexity of 𝑂(𝑛2).

2) LARGE-SCALE LINEAR KERNEL 𝒗-MADR

In regression analysis, processing larger datasets may increase

the time complexity. Although the DCD algorithm could solve

kernel 𝑣-MADR efficiently for small sample problems, it is

not the best strategy for larger problems. Considering

computational time cost, we adopt an averaged stochastic

gradient descent (ASGD) algorithm [40] to linear kernel 𝑣-

MADR to improve the scalability of 𝑣-MADR, and ASGD

solves the optimization problem by computing a noisy

unbiased estimate of the gradient, and it randomly samples a

subset of the training instances rather than all data.

We reformulate Formula (10) into a linear kernel 𝑣-MADR

as follows:

𝑚𝑖𝑛
𝒘
𝑔(𝒘) =

1

2
𝒘𝑇 [𝑰 +

4𝜆1+2𝜆2

𝑛
𝑿𝑿𝑇 −

4𝜆1

𝑛2
𝑿𝒆𝒆𝑇𝑿𝑇] 𝒘 +

[−
4𝜆1+2𝜆2

𝑛
𝑿𝒚 +

4𝜆1

𝑛2
𝑿𝒆𝒆𝑇𝒚]

𝑇

𝒘+
𝐶

𝑛
(∑ 𝑚𝑎𝑥(0, 𝑦𝑖 −

𝑛
𝑖=1

𝒘𝑇𝒙𝑖 − 𝜀) + ∑ 𝑚𝑎𝑥(0,𝒘𝑇𝒙𝑖 − 𝑦𝑖 − 𝜀)
𝑛
𝑖=1), (23)

where 𝑿 = [𝒙1, 𝒙2, … , 𝒙𝑛] and 𝒚 = [𝑦1, 𝑦2 , … , 𝑦𝑛]
𝑇 . The

term 𝐶𝑣𝜀 in Formula (10) is constant in an optimization

problem, so we omit this term.

For large-scale problems, it is expensive to compute the

gradient of Formula (23) because we need all the training

samples for computation. Stochastic gradient descent (SGD)

[41, 42] works by computing a noisy unbiased estimation of

the gradient via sampling a subset of the training samples.

When the objective is convex, the SGD is expected to

converge to the global optimal solution. In recent years, SGD

has been successfully used in various machine learning

problems with powerful computation efficiency [43-46].

In order to obtain an unbiased estimation of the gradient

𝛻𝑔(𝒘), we first present the following theorem which can be

proved by computing 𝛻𝑔(𝒘).

Theorem 2. If two samples (𝒙𝑖, 𝑦𝑖) and (𝒙𝑗 , 𝑦𝑗) are sampled

from the training data set randomly, then

𝛻𝑔(𝒘, 𝒙𝑖 , 𝒙𝑗) = (4𝜆1 + 2𝜆2)𝒙𝑖𝒙𝑖
𝑇𝑤 − 4𝜆1𝑒𝑖𝒙𝑖𝑒𝑗𝒙𝑗

𝑇𝒘+

 𝒘 − (4𝜆1 + 2𝜆2)𝑦𝑖𝒙𝑖 + 4𝜆1𝑒𝑖𝒙𝑖𝑒𝑗𝑦𝑗 −

 𝐶 {
𝒙𝑖 𝑖 ∈ 𝐼1,
−𝒙𝑖 𝑖 ∈ 𝐼2,
𝟎 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 (24)

is an unbiased estimation of 𝛻𝑔(𝒘) . Here 𝐼1 = {𝑖|𝑦𝑖 −
𝒘𝑇𝒙𝑖 ≥ 𝜀}, 𝐼2 = {𝑖|𝒘𝑇𝒙𝑖 − 𝑦𝑖 ≥ 𝜀}.
Proof. Note that the gradient of 𝑔(𝒘) is

𝛻𝑔(𝒘) = 𝑮𝒘 +𝑯 −
𝐶

𝑛

{

 ∑𝒙𝑖

𝑛

𝑖=1

 𝑖 ∈ 𝐼1,

∑−𝒙𝑖

𝑛

𝑖=1

 𝑖 ∈ 𝐼2,

𝟎 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

where 𝑮 = 𝑰 +
4𝜆1+2𝜆2

𝑛
𝑿𝑿𝑇 −

4𝜆1

𝑛2
𝑿𝒆𝒆𝑇𝑿𝑇 and 𝑯 =

−
4𝜆1+2𝜆2

𝑛
𝑿𝒚 +

4𝜆1

𝑛2
𝑿𝒆𝒆𝑇𝒚. Further note that

 𝐸𝒙𝑖[𝒙𝑖𝒙𝑖
𝑇] =

1

𝑛
∑𝒙𝑖𝒙𝑖

𝑇

𝑛

𝑖=1

=
1

𝑛
𝑿𝑿𝑇 ,

 𝐸𝒙𝑖[𝑦𝑖𝒙𝑖] =
1

𝑛
∑𝑦𝑖𝒙𝑖

𝑛

𝑖=1

=
1

𝑛
𝑿𝒚,

 𝐸𝒙𝑖[𝑒𝑖𝒙𝑖] =
1

𝑛
∑𝒙𝑖

𝑛

𝑖=1

=
1

𝑛
𝑿𝒆,

 𝐸𝒙𝑖[𝑒𝑖𝑦𝑖] =
1

𝑛
∑ 𝑦𝑖
𝑛
𝑖=1 =

1

𝑛
𝒚𝑇𝒆. (25)

According to the linearity of expectation, the independence

between 𝒙𝑖 and 𝒙𝑗 , and with the set of equations (25), we

have

𝐸𝒙𝑖𝒙𝑗[𝛻𝑔(𝒘, 𝒙𝑖 , 𝒙𝑗)]

= (4𝜆1 + 2𝜆2) 𝐸𝒙𝑖[𝒙𝑖𝒙𝑖
𝑇]𝒘 − 4𝜆1 𝐸𝒙𝑖[𝑒𝑖𝒙𝑖]𝐸𝒙𝑗 [𝑒𝑗𝒙𝑗]𝒘

+𝒘− (4𝜆1 + 2𝜆2)𝐸𝒙𝑖[𝑦𝑖𝒙𝑖] + 4𝜆1𝐸𝒙𝑖[𝑒𝑖𝒙𝑖]𝐸𝒙𝑗[𝑒𝑗𝑦𝑗]

 −𝐶 {

𝐸𝒙𝑖[𝒙𝑖|𝑖 ∈ 𝐼1],

𝐸𝒙𝑖[−𝒙𝑖|𝑖 ∈ 𝐼2],

𝟎 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

= (4𝜆1 + 2𝜆2)
1

𝑛
𝑿𝑿𝑇𝒘 − 4𝜆1

1

𝑛2
𝑿𝒆𝒆𝑇𝑿𝑇𝒘 +𝒘

 −(4𝜆1 + 2𝜆2)
1

𝑛
𝑿𝒚 + 4𝜆1

1

𝑛2
𝑿𝒆𝒆𝑇𝒚

 −𝐶
1

𝑛

{

 ∑𝒙𝑖

𝑛

𝑖=1

, 𝑖 ∈ 𝐼1,

∑−𝒙𝑖

𝑛

𝑖=1

, 𝑖 ∈ 𝐼2,

𝟎 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 = 𝑮𝒘 + 𝑯−
𝐶

𝑛

{

 ∑𝒙𝑖

𝑛

𝑖=1

 𝑖 ∈ 𝐼1 ,

∑−𝒙𝑖

𝑛

𝑖=1

 𝑖 ∈ 𝐼2,

𝟎 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 = 𝛻𝑔(𝒘).

It is shown that 𝛻𝑔(𝒘, 𝒙𝑖 , 𝒙𝑗) is a noisy unbiased gradient

of 𝑔(𝒘). Q.E.D.

Based on Theorem 2, the stochastic gradient can be updated

as follows:

 𝒘𝑡+1 = 𝒘𝑡 − 𝜑𝑡𝛻𝑔(𝒘, 𝒙𝑖 , 𝒙𝑗), (26)

where 𝜑𝑡 is the learning rate at the 𝑡-th iteration.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2992703, IEEE Access

VOLUME XX, 2017 8

Since the ASGD algorithm is more robust than the SGD

algorithm [47], we actually adopt the ASGD algorithm to

solve the optimization problem in Formula (23). At each

iteration, in addition to updating the normal stochastic gradient

in Equation (26), we also compute

𝒘̄𝑡 =
1

𝑡 − 𝑡0
∑ 𝒘𝑖

𝑡

𝑖=𝑡0+1

,

where 𝑡0 decides when to take the averaging operation. This

average can also be calculated in a recursive formula as

follows:

𝒘̄𝑡+1 = 𝒘̄𝑡 + 𝛿𝑡(𝒘𝑡+1 − 𝒘̄𝑡),
where 𝛿𝑡 = 1/𝑚𝑎𝑥{ 1, 𝑡 − 𝑡0}.

Algorithm 2 summarizes the procedure of large-scale linear

kernel 𝑣-MADR.

Algorithm 2 Averaged stochastic gradient descent
solver for linear kernel 𝑣-MADR.

Input: Dataset 𝑿, 𝜆1, 𝜆2, 𝐶, 𝜀;
Output: 𝒘

_
;

Initialization: 𝒖 = 𝟎, 𝑡 = 1, 𝑇 = 5;
1: While 𝑡 ≤ 𝑇 ⋅ 𝑛 do
2: Randomly select the training instances (𝒙𝑖 , 𝒚𝑖) and

(𝒙𝑗 , 𝒚𝑗);

3: Compute 𝛻𝑔(𝒘, 𝒙𝑖 , 𝒙𝑗) as in Equation (24);

4: 𝒘 ← 𝜑𝑡𝛻𝑔(𝒘, 𝒙𝑖 , 𝒙𝑗);

5: 𝒘̄ ← 𝒘̄ + 𝛿𝑡(𝒘 − 𝒘̄);
6: end while

The time complexity of the averaged stochastic gradient

descent (ASGD) algorithm is 𝑂(𝑇 ∗ 𝑛 ∗ 𝑚) and its space

complexity is 𝑂(𝑛 ∗ 𝑚).

3) PROPERTIES OF 𝑣-MADR

We study the statistical property of 𝑣-MADR that leads to a

bound on the expectation of error for 𝑣-MADR according to

the leave-one-out cross-validation estimate, which is an

unbiased estimate of the probability of test error. For the sake

of simplicity, we only discuss the linear case as shown

Formula (10) here, in which 𝒘 can be represented by the

following form:

𝒘 = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑛

𝑖=1 = 𝜶 − 𝜶∗,
while the result is also used in kernel mapping situations ϕ.

Then we can get the dual problem of Formula (10) using the

same steps as in Section III.B.1, i.e.

𝑚𝑖𝑛
𝜷
𝑓(𝜷) =

1

2
(2𝜷 − 𝐶𝑣𝒆)𝑇𝑷(2𝜷 − 𝐶𝑣𝒆) + 𝒔𝑇(2𝜷 − 𝐶𝑣𝒆)

𝑠. 𝑡. 0 ≤ 𝛽𝑖 ≤
𝐶

𝑛
, 𝑖 = 1,2, … , 𝑛, (27)

where 𝑷 = 𝑿𝑇𝑮−1𝑿, 𝒔 = −𝑿𝑇𝑮−1𝑯− 𝒚, G=
4𝜆1+2𝜆2

𝑛
𝑿𝑿𝑇

−
4𝜆1

𝑛2
𝑿𝒆𝒆𝑇𝑿𝑇+𝑰 and 𝑯 = −

4𝜆1+2𝜆2

𝑛
𝑿𝒚 +

4𝜆1

𝑛2
𝑿𝒆𝒆𝑇𝒚.

Definition 3. Regression error is defined as follows:

𝜋(𝒙, 𝑦) = |𝑦 − 𝑓(𝒙)|.

We give the following theorem to state the expectation of

the probability of test error.

Theorem 3. Let 𝜷 be the optimal solution of (27), and

𝐸[𝑅(𝜷)] be the expectation of the probability of test error,

then we have

 𝐸[𝑅(𝜃)] ≤
𝐸[𝜀|𝑰1|+2𝑝∑ 𝛽𝑖𝑖𝜖𝑰2 +∑ (𝜀+𝜉𝑖̅)𝑖𝜖𝑰3]

𝑛
 (28)

where 𝐼1 ≡ {𝑖|(𝛽𝑖 = 0) ∩ (𝛽𝑖
∗ = 0)} , 𝐼2 ≡ {𝑖|((0 < 𝛽𝑖 <

𝐶 𝑛⁄) ∩ (𝛽𝑖
∗ = 0)) ∪ ((0 < 𝛽𝑖

∗ < 𝐶 𝑛⁄) ∩ (𝛽𝑖 = 0))} , 𝐼3 ≡
{𝑖|((𝛽𝑖 = 𝐶 𝑛⁄) ∩ (𝛽𝑖

∗ = 0)) ∪ ((𝛽𝑖
∗ = 𝐶 𝑛⁄) ∩ (𝛽𝑖 = 0))} ,

𝜉𝑖̅ = 𝑚𝑎𝑥 {𝜉𝑖 , 𝜉𝑖
∗}, 𝑝 = 𝑚𝑎𝑥 {𝑝𝑖𝑖 , 𝑖 = 0,1,⋯ , 𝑛}, 𝛽𝑖

∗ = 𝐶𝑣 −
𝛽𝑖 and 𝑝𝑖𝑖 is the diagonal entry of 𝑷.

Proof. Suppose

 𝜷∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
0≤𝜷≤

𝐶

𝑛

𝑓(𝜷),

 𝜷𝒊 = 𝑎𝑟𝑔𝑚𝑖𝑛
0≤𝜷≤

𝐶

𝑛
,𝛽𝑖=0

𝑓(𝜷) , 𝑖 = 1,2,⋯ 𝑛

and the corresponding solution for the linear kernel 𝑣-MADR

are 𝒘′ and 𝒘𝑖 , respectively.

According to [48],

 𝐸[𝑅(𝜃)] ≤
𝐸[𝐿((𝒙1,𝑦1),(𝒙2,𝑦2),…,(𝒙𝑛 ,𝑦𝑛))]

𝑛
 (29)

where 𝐿((𝒙1, 𝑦1), (𝒙2, 𝑦2), … , (𝒙𝑛, 𝑦𝑛)) is the number of

errors in the leave-one-out procedure.

In the process of solving Formula (27) using the Lagrange

multipliers, every sample must meet the following KKT

conditions:

𝛽𝑖(𝜀+𝜉𝑖 − 𝑦𝑖 + 𝒙𝑖
𝑇𝜶′) = 0,

𝛽𝑖
∗(𝜀+𝜉𝑖

∗ + 𝑦𝑖 − 𝒙𝑖
𝑇𝜶′) = 0,

(
𝐶

𝑛
− 𝛽𝑖) 𝜉𝑖 = 0,

(
𝐶

𝑛
− 𝛽𝑖

∗) 𝜉𝑖
∗ = 0,

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0, 𝑖 = 1,2, … , 𝑛,

𝜀 ≥ 0.

According to the KKT conditions, we have that if and only

if 𝜀+𝜉𝑖 − 𝑦𝑖 + 𝒙𝑖
𝑇𝜶′ = 0, 𝛽𝑖 can take a non-zero value, and

if and only if 𝜀+𝜉𝑖
∗ + 𝑦𝑖 − 𝒙𝑖

𝑇𝜶′ = 0, 𝛽𝑖
∗ can take a non-zero

value. In other words, if the sample (𝒙𝑖 , 𝑦𝑖) is not in the 𝜀-tube

in the leave-one-out procedure, 𝛽𝑖 and 𝛽𝑖
∗ can take a non-zero

value. In addition, 𝜀+𝜉𝑖 − 𝑦𝑖 + 𝒙𝑖
𝑇𝜶′ = 0 and 𝜀+𝜉𝑖

∗ + 𝑦𝑖 −
𝒙𝑖
𝑇𝜶′ = 0 cannot be established at the same time, so we get

that at least one of 𝛽𝑖 and 𝛽𝑖
∗ is zero. The specific breakdown

is as follows:

i) If the sample (𝒙𝑖 , 𝑦𝑖) is in the 𝜀-tube in the leave-one-out

procedure, then 𝜀+𝜉𝑖 − 𝑦𝑖 + 𝒙𝑖
𝑇𝜶′ ≠ 0 and 𝜀+𝜉𝑖

∗ + 𝑦𝑖 −
𝒙𝑖
𝑇𝜶′ ≠ 0, so we have 𝛽𝑖 = 0 and 𝛽𝑖

∗ = 0;

ii) If the sample (𝒙𝑖 , 𝑦𝑖) is out of the 𝜀-tube in the leave-

one-out procedure, we have the following two situations:

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2992703, IEEE Access

VOLUME XX, 2017 9

a) if the sample is above the 𝜀-tube, then 𝜉𝑖 ≠ 0 and

𝜀+𝜉𝑖
∗ + 𝑦𝑖 − 𝒙𝑖

𝑇𝜶′ ≠ 0 . So we have 𝛽𝑖 = 𝐶 𝑛⁄ and

𝛽𝑖
∗ = 0;

b) if the sample is under the 𝜀-tube, then 𝜉𝑖
∗ ≠ 0 and

𝜀+𝜉𝑖 − 𝑦𝑖 + 𝒙𝑖
𝑇𝜶′ ≠ 0 . So we have 𝛽𝑖

∗ = 𝐶 𝑛⁄ and

𝛽𝑖 = 0;

iii) If the sample (𝒙𝑖 , 𝑦𝑖) is on the gap of the 𝜀-tube in the

leave-one-out procedure, we have the following two situations:

 a) if the sample is on the upper gap of the 𝜀-tube, then

 𝜉𝑖 = 0, and we have 0 < 𝛽𝑖 ≤ 𝐶 𝑛⁄ and 𝛽𝑖
∗ = 0;

 b) if the sample is on the lower gap of the 𝜀-tube, then

 𝜉𝑖
∗ = 0, and we have 0 < 𝛽𝑖

∗ ≤ 𝐶 𝑛⁄ and 𝛽𝑖 = 0.

Based on the discussion above, we consider the following

three cases to calculate the test error:

i) If both 𝛽𝑖 = 0 and 𝛽𝑖
∗ = 0 , we have that the sample

(𝒙𝑖 , 𝑦𝑖) is in the 𝜀-tube in the leave-one-out procedure, and

𝜋(𝒙𝑖 , 𝑦𝑖) ≤ 𝜀.

ii) If (0 < 𝛽𝑖 < 𝐶 𝑛⁄) ∩ (𝛽𝑖
∗ = 0) or (0 < 𝛽𝑖

∗ < 𝐶 𝑛⁄) ∩
(𝛽𝑖 = 0), we have that

𝑓(𝜷𝒊) − 𝑚𝑖𝑛
𝑡
𝑓(𝜷𝒊 + 𝑡𝒅𝑖) ≤ 𝑓(𝜷

𝒊) − 𝑓(𝜷′), (30)

𝑓(𝜷𝒊) − 𝑓(𝜷′) ≤ 𝑓(𝜷′ − 𝛽𝑖
′𝒅𝑖) − 𝑓(𝜷

′), (31)

where 𝒅𝑖 denotes the vector with 1 in the 𝑖-th element and 0′𝑠

elsewhere. We can discovery that the left-hand side of formula

(30) is equal to [𝛻𝑓(𝜷)]𝑖
2 (8𝑝𝑖𝑖)⁄ = (𝒙𝑖

𝑇𝒘𝑖 − 𝑦𝑖)
2 (2𝑝𝑖𝑖)⁄

and the right-hand side of formula (31) is equal to 2𝑝𝑖𝑖𝛽𝑖
′2. So

by combining formula (30) and (31), we have

𝜋(𝒙𝑖 , 𝑦𝑖)
2 (2𝑝𝑖𝑖)⁄ = (𝒙𝑖

𝑇𝒘𝑖 − 𝑦𝑖)
2 (2𝑝𝑖𝑖)⁄ ≤ 2𝑝𝑖𝑖𝛽𝑖

′2 .

Further, we can obtain 𝜋(𝒙𝑖 , 𝑦𝑖) ≤ 2𝑝𝑖𝑖𝛽𝑖
′.

iii) If (𝛽𝑖 = 𝐶 𝑛⁄) ∩ (𝛽𝑖
∗ = 0) or (𝛽𝑖

∗ = 𝐶 𝑛⁄) ∩ (𝛽𝑖 = 0),
we have that the sample (𝒙𝑖 , 𝑦𝑖) is not in the 𝜀-tube in the

leave-one-out procedure. So we can get 𝜋(𝒙𝑖 , 𝑦𝑖) = 𝜀 + 𝜉i̅
′
,

where 𝜉i̅
′
= 𝑚𝑎𝑥 {𝜉𝑖

′, 𝜉𝑖
∗′}.

So we have

𝐿((𝒙1, 𝑦1), … , (𝒙𝑛, 𝑦𝑛))

≤ 𝜀|𝑰1| + 2𝑝∑ 𝛽𝑖
′

𝑖𝜖𝑰2

+∑ (𝜀 + 𝜉𝑖̅
′
)

𝑖𝜖𝑰3

,

where 𝐼1 ≡ {𝑖|(𝛽𝑖
′ = 0) ∩ (𝛽𝑖

∗′ = 0)} , 𝐼2 ≡ {𝑖| ((0 < 𝛽𝑖
′ <

𝐶 𝑛⁄) ∩ (𝛽𝑖
∗′ = 0)) ∪ ((0 < 𝛽𝑖

∗′ < 𝐶 𝑛⁄) ∩ (𝛽𝑖
′ =

0))} , 𝐼3 ≡ {𝑖| ((𝛽𝑖
′ = 𝐶 𝑛⁄) ∩ (𝛽𝑖

∗′ = 0)) ∪ ((𝛽𝑖
∗′ =

𝐶 𝑛⁄) ∩ (𝛽𝑖
′ = 0))} , 𝜉𝑖̅

′
= 𝑚𝑎𝑥 {𝜉𝑖

′, 𝜉𝑖
∗′} , 𝑝 = 𝑚𝑎𝑥 {𝑝𝑖𝑖 , 𝑖 =

0,1,⋯ , 𝑛} and 𝛽𝑖
∗′ = 𝐶𝑣 − 𝛽𝑖

′.Take expectation on both side

and with formula (29), we reach the conclusion that formula

(28) holds. Q.E.D.

IV. EXPERIMENTAL RESULTS

Since SVR-based algorithms are now widely used for

regression problems and demonstrate better generalization

ability [8-10] than many existing algorithms, such as least

square regression [4], Neural Networks (NN) regression [5],

logistic regression [6], and ridge regression [7], we will not

repeat these comparisons. In this section, we empirically

evaluate the performance of our 𝑣 -MADR compared with

other SVR-based algorithms, including 𝑣-SVR, LS-SVR, 𝜀-

TSVR, and linear 𝜀-SVR on several datasets, including two

artificial datasets, eight medium-scale datasets, and six large-

scale datasets. All algorithms are implemented with

MATLAB R2014a on a PC with a 2.00GHz CPU and 32 GB

memory. 𝑣-SVR is solved by LIBSVM [49]; 𝜀-SVR is solved

by LIBLINEAR [50]; LS-SVR is solved by LSSVMlab [51];

and 𝜀-TSVR is solved by the SOR technique [52, 53]. RBF

kernel 𝜅(𝐱𝑖
𝑇 , 𝐱𝑗

𝑇) = exp (– ‖𝐱𝑖
𝑇 − 𝐱𝑗

𝑇‖
2
/σ2) and

polynomial kernel 𝜅(𝐱𝑖
𝑇 , 𝐱𝑗

𝑇) = (𝐱𝑖 ⋅ 𝐱𝑗 + 1)
𝑑

 are employed

for nonlinear regression. The values of the parameters are

obtained by means of a grid-search method [54]. For brevity,

we set 𝑐1 = 𝑐2, 𝑐3 = 𝑐4 and 𝜀1 = 𝜀2 for 𝜀-TSVR and 𝜆1 = 𝜆2

for our nonlinear 𝑣-MADR. The parameter 𝑣 in 𝑣-MADR is

selected from the set {2−9, 2−8, . . . , 20}, and the remaining

parameters in the five methods and the parameters in the

Gaussian kernel are selected from the set {2−9, 2−8, . . . , 29}
by 10-fold cross-validation. Specifically, the parameter 𝑑 in

polynomial kernel is selected from {2, 3, 4, 5, 6}.
In order to evaluate the performance of the proposed

algorithm, the performance metrics are specified before

presenting the experimental results. Without loss of generality,

let 𝑛 be the number of training samples and 𝑚 be the number

of testing samples, denote 𝑦̂𝑖 as the prediction value of 𝑦𝑖, and

𝑦̅ = (∑ 𝑦𝑖
𝑚
𝑖=1) 𝑚⁄ as the average value of 𝑦1 , 𝑦2, … , 𝑦𝑚. Then

the details of the metrics used for assessing the performance

of all regression algorithms are stated in Table 2. To

demonstrate the overall performance of a method, a

performance metric referred to average rank of each method is

defined as

average rank(𝑅) =
1

𝑠
∑ rank(𝑅)𝑖

𝑠

𝑖=1

,

where 𝑅 ∈ {𝑣-SVR, LS-SVR, 𝜀-TSVR, LIBLINE-AR,
𝑣-MADR} is the regression method, 𝑠 is the number of

datasets, and rank(𝑅)𝑖 means the performance rank of

method 𝑅 on the 𝑖-th dataset among all regression methods.

In our experiments, we test the performance of the above

methods on two artificial datasets, eight medium-scale

datasets and six large-scale data sets. The basic information of

these datasets is given in Table 3. All real-world datasets are

taken from UCI (http://archive.ics.uci.edu/ml) and StatLib

(http:// lib.stat.cmu.edu/), and more detailed information can

be accessed from those websites. Before regression analysis,

all of these real datasets are normalized to zero mean and unit

deviation. For medium-scale datasets, RBF kernel and

polynomial kernel are used, and for large-scale datasets, only

the linear kernel 𝑣 -MADR is used considering the

computational complexity. Each experiment is repeated for 30

trials with 10-fold cross validation and the mean evaluation of

𝑅2 , NMSE, MAPE and their standard deviations were

recorded. Particularly, the two datasets “Diabetes” and

http://archive.ics.uci.edu/ml

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2992703, IEEE Access

VOLUME XX, 2017 10

“Motorcycle” have smaller numbers of samples and features,

so we use the leave-one-out cross validation instead.
TABLE 2

 PERFORMANCE METRICS

Metrics Definition

SSE SSE =∑(𝑦𝑖 − 𝑦̂𝑖)
2

𝑚

𝑖=1

SST

SSR

SST =∑(𝑦𝑖 − 𝑦̅)
2

𝑚

𝑖=1

 SSR =∑(𝑦̂𝑖 − 𝑦̅)
2

𝑚

𝑖=1

NMSE NMSE = SSE/SST

 𝑅2 R2 =
(
1
𝑚
∑ (𝑦̂𝑖 − 𝐸[𝑦̂𝑖])(𝑦𝑖 − 𝐸[𝑦𝑖])
𝑚
𝑖=1)

2

𝜎𝑦
2𝜎𝑦̂

2

MAPE MAPE =
1

𝑚
∑|

𝑦𝑖 − 𝑦̂𝑖
𝑦𝑖

|

𝑚

𝑖=1

TABLE 3

THE REAL-WORLD DATASETS USED FOR EXPERIMENTS

Scale Dataset Samples Features Dataset Samples Features

medium Diabetes 43 2 Motorcycle 133 1

Autoprice 159 15 Servo 167 4

Wisconsin 194 32 MachineCPU 209 31

AutoMpg 398 7 WDBC 569 30

large ConcreteCS 1030 8 Abalone 4177 8

CPUsmall 8192 12 Bike 10886 9

Driftdataset 13910 128 Cadate 20640 8

A. ARTIFICIAL DATASETS

In order to compare our 𝑣-MADR with 𝑣-SVR, LS-SVR, and

𝜀 -TSVR, we choose two artificial datasets with different

distributions. Firstly, we consider the function: 𝑦 = 𝑥
2

3 . In

order to fully assess the performance of the methods, the

training samples are added with Gaussian noises with zero

means and 0.5 standard deviation, that is, we have the

following training samples (𝑥𝑖 , 𝑦𝑖):

𝑦𝑖 = 𝑥
𝑖

2

3 + 𝜉𝑖 , 𝑥𝑖~𝑈[−2,2], 𝜉𝑖~𝑁(0,0. 5
2), (32)

where 𝑈[𝑎, 𝑏] represents the uniformly random variable in

[𝑎, 𝑏] and 𝑁(𝜇, 𝜎2) represents the Gaussian random variable

with means 𝜇 and standard deviation 𝜎, respectively. To avoid

biased comparisons, ten independent groups of noisy samples

are randomly generated, including 200 training samples and

400 none noise test samples.

The estimated functions obtained by these four methods are

shown in Figure 1. Obviously, all four methods have obtained

good fitted values, but our 𝑣 -MADR has the best

approximation compared to the rest of the methods. Table 4

shows the corresponding performance metrics and training

time. Compared with the other methods, our 𝑣-MADR has the

highest 𝑅2 , lowest NMSE and MAPE, which indicates that

our 𝑣-MADR achieves good fitting performance and a good

presentation of the statistical information in the training

dataset. In addition, the CPU time of our 𝑣 -MADR is not

much different from other methods, and equivalent to 𝑣-SVR.

The second artificial example is the regression estimation

on the Sinc function: 𝑦 = 𝑠𝑖𝑛(𝑥) 𝑥⁄ . The training samples are

added with Gaussian noise with zero means and 0.5 standard

deviation. Therefore, we have the following training samples

(𝑥𝑖 , 𝑦𝑖):

𝑦𝑖 =
𝑠𝑖𝑛(𝑥𝑖)

𝑥𝑖
+ (0.5 −

|𝑥𝑖|

8𝜋
) 𝜉𝑖 ,

 𝑥𝑖~𝑈[−4𝜋, 4𝜋], 𝜉𝑖~𝑁(0,0. 5
2). (33)

The dataset consists of 200 training samples and 400 test

samples. Figure 2 illustrates the estimated functions obtained

by these four methods and Table 4 shows the corresponding

performance. These results also demonstrate the superiority of

our method. At the bottom of Table 4, we list the average ranks

of all four methods on the artificial datasets for different

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2992703, IEEE Access

VOLUME XX, 2017 11

performance metrics. It can be seen that our 𝑣 -MADR is

superior to other three methods on 𝑅2 and NMSE, and is

comparable to LS-SVR and 𝜀-TSVR in terms of MAPE.

(a) 𝑣-SVR (b) LS-SVR

(c) 𝜀-TSVR (d) 𝑣-MADR

FIGURE 1. The predictions of 𝒗-SVR, LS-SVR, 𝜺-TSVR and our 𝒗-MADR on function 𝒚 = 𝒙
𝟐

𝟑.

 (a) 𝑣-SVR (b) LS-SVR

 (c) 𝜀-TSVR (d) 𝑣-MADR

FIGURE 2. The predictions of 𝒗-SVR, LS-SVR, 𝜺-TSVR and our 𝒗-MADR on the sinc function.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2992703, IEEE Access

12

TABLE 4

THE RESULT COMPARISONS OF 𝒗-SVR, LS-SVR, 𝜺-TSVR AND OUR 𝒗-MADR ON ARTIFICIAL DATASETS.

Dataset regressor 𝑅2 (rank) NMSE (rank) MAPE (rank) CPU(sec)

𝑥
2
3

𝑣-SVR 0.9319(4) 0.0856(4) 0.2479(4) 0.0333

LS-SVR 0.9446(3) 0.0698(3) 0.2152(2) 0.0188

𝜀-TSVR 0.9500(2) 0.0593(2) 0.2091(1) 0.0196

𝒗-MADR 0.9584(1) 0.0529(1) 0.2165(3) 0.0471

𝑆𝑖𝑛𝑐(𝑥) 𝑣-SVR 0.9889(2) 0.0183(2) 1.1792(4) 0.0837

LS-SVR 0.9844(3) 0.0190(3) 0.8389(2) 0.0172

𝜀-TSVR 0.9823(4) 0.0200(4) 0.9118(3) 0.0202

𝒗-MADR 0.9940(1) 0.0083(1) 0.7333(1) 0.0474

average

rank

𝑣-SVR 3 3 4 -

LS-SVR 3 3 2 -

𝜀-TSVR 3 3 2 -

𝒗-MADR 1 1 2 -

B. MEDIUM-SCALE DATASETS

Table 5 and Table 6 list the experimental results on the eight

medium-scale datasets from UCI and StatLib with RBF and

polynomial kernels, respectively. From the average rank at the

bottom of Table 5 and Table 6, our 𝑣-MADR is superior to the

other three methods. In detail, on most datasets, our 𝑣-MADR

has the highest 𝑅2, lowest NMSE and MAPE. Although on

several datasets, such as “MachineCPU”, our 𝑣-MADR does

not achieve the best experimental results compared with other

methods, it is not the worst. Our 𝑣 -MADR also has good

performance in terms of CPU running time. The above

experimental results indicate that 𝑣-MADR is an efficient and

promising algorithm for regression. Table 7 and Table 8 list

the optimal parameters with RBF and polynomial kernels,

respectively. Figure 3(a) and Figure 3(b) show the

comparisons of CPU time among our 𝑣-MADR, 𝑣-SVR, LS-

SVR and 𝜀-TSVR on each medium-scale dataset with RBF

kernel and polynomial kernel.

For further evaluation, we investigate the absolute

regression deviation mean and variance of our 𝑣-MADR with

RBF kernel, 𝑣-SVR, LS-SVR and 𝜀-TSVR on medium-scale

datasets as shown in Figure 4. From Figure 4, our 𝑣-MADR

has the smallest absolute regression deviation mean and

variance on most datasets. In addition, 𝑣-MADR also has the

most compact mean and variance distribution, which

demonstrates its robustness. From the above results, it is

obvious that our 𝑣-MADR outperforms other three methods.

The change of parameter values may have a great effect on

the results of regression analysis. For our RBF kernel 𝑣 -

MADR, there are mainly three trade-off parameters, i.e., 𝜆1,

𝜆2, 𝐶 and one kernel parameter 𝜎. Figure 5(a) and Figure 5(b)

shows the influence of 𝜆1 on NMSE and CPU time by varying

it from 2−9 to 29 while fixing 𝜆2, 𝐶 and 𝜎 as the optimal ones

by cross validation. Figures 5(c)~5(h) show the influence of

𝜆2, 𝐶 and 𝜎 on NMSE and CPU time, respectively. As one

can see from Figure 5(a), Figure 5(c) and Figure 5(e), the

NMSE values on medium-scale datasets do not change

significantly when the values of the three parameters 𝜆1, 𝜆2,

and 𝐶 are changed. Figure 5(g) shows that 𝜎 has more obvious

influence on NMSE. On most datasets, as 𝜎 becomes larger,

NMSE will become smaller and smaller until it converges at a

fixed value. Figure 5(b), Figure 5(d), Figure 5(f) and Figure

5(h) show the influence of parameters 𝜆1, 𝜆2, 𝐶 and 𝜎 on CPU

time. Experimental results indicate that the performance of 𝑣-

MADR is not sensitive to parameter changes, which further

demonstrates the robustness of 𝑣-MADR.

TABLE 5

THE RESULT COMPARISONS OF 𝒗-SVR, LS-SVR, 𝜺-TSVR AND 𝒗-MADR ON MEDIUM-SCALE DATASETS WITH RBF KERNEL

Dataset regressor 𝑅2 (rank) NMSE (rank) MAPE (rank) CPU(sec)

 Diabetes 𝑣-SVR 0.5343  0.0028(2) 0.4768  0.0024(2) 1.5971  0.0197(4) 0.009

LS-SVR 0.5151  0.0381(4) 0.4986  0.0504(4) 1.5742  0.0477(2) 0.014

𝜀-TSVR 0.5281  0.1182(3) 0.4805  0.1185(3) 1.5909  0.1188(3) 0.004

𝒗-MADR 0.5891  0.0137(1) 0.4127  0.0141(1) 1.4750  0.0493(1) 0.002

 Motorcycle 𝑣-SVR 0.7938  0.0020(3) 0.2081  0.0029(4) 1.2636  0.0352(4) 0.007

LS-SVR 0.7975  0.0011(2) 0.2027  0.0009(3) 1.2444  0.0154(3) 0.013

𝜀-TSVR 0.7680  0.0003(4) 0.2021  0.0003(2) 1.2441  0.0055(2) 0.012

𝒗-MADR 0.7984  0.0006(1) 0.2017  0.0007(1) 1.2316  0.0063(1) 0.016

Autoprice 𝑣-SVR 0.9481  0.0680(2) 0.0530  0.0698(2) 0.4187  0.1070(1) 0.004

LS-SVR 0.9465  0.0674(3) 0.0541  0.0682(3) 0.5039  0.1392(3) 0.049

𝜀-TSVR 0.9338  0.0744(4) 0.0665  0.0745(4) 0.5355  0.1524(4) 0.007

𝒗-MADR 0.9549  0.0040(1) 0.0467  0.0035(1) 0.4889  0.0220(2) 0.027

Servo 𝑣-SVR 0.9337  0.0565(4) 0.0686  0.0582(4) 0.2491  0.0420(2) 0.291

LS-SVR 0.9630  0.0403(2) 0.0372  0.0406(2) 0.3374  0.1835(3) 0.019

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2992703, IEEE Access

VOLUME XX, 2017 13

𝜀-TSVR 0.9507  0.0445(3) 0.0495  0.0446(3) 0.3931  0.2082(4) 0.016

𝒗-MADR 0.9755  0.0187(1) 0.0253  0.0320(1) 0.2473  0.1280(1) 0.045

 Wisconsin 𝑣-SVR 0.2420  0.0354(3) 0.7712  0.0371(3) 1.8255  0.1265(4) 0.008

LS-SVR 0.2546  0.0146(2) 0.7574  0.0202(2) 1.5667  0.0462(1) 0.086

𝜀-TSVR 0.2285  0.0130(4) 0.7752  0.0137(4) 1.7028  0.1055(3) 0.027

𝒗-MADR 0.2641  0.0016(1) 0.7486  0.0012(1) 1.5840  0.0125(2) 0.046

MachineCPU 𝑣-SVR 0.9994  0.0005(1) 0.0006  0.0006(1) 0.0888  0.1165(1) 0.006

LS-SVR 0.9978  0.0020(2) 0.0022  0.0020(2) 0.1775  0.1113(2) 0.027

𝜀-TSVR 0.9921  0.0048(4) 0.0080  0.0048(4) 0.3580  0.1641(4) 0.034

𝒗-MADR 0.9942  0.0014(3) 0.0063  0.0017(3) 0.2134  0.0779(3) 0.047

 AutoMpg 𝑣-SVR 0.9196  0.0108(4) 0.0807  0.0121(4) 1.0111  0.2842(2) 0.118

LS-SVR 0.9262  0.0072(2) 0.0741  0.0079(2) 1.0196  0.0977(3) 0.054

𝜀-TSVR 0.9228  0.0034(3) 0.0773  0.0035(3) 1.0549  0.0421(4) 0.105

𝒗-MADR 0.9267  0.0017(1) 0.0736  0.0015(1) 1.0080  0.0182(1) 0.326

 WDBC 𝑣-SVR 0.9382  0.0106(3) 0.0632  0.0086(3) 0.0988  0.0041(3) 0.216

LS-SVR 0.9520  0.0109(2) 0.0489  0.0113(2) 0.0182  0.0052(1) 0.196

𝜀-TSVR 0.9344  0.0066(4) 0.0659  0.0047(4) 0.1726  0.0085(4) 0.615

𝒗-MADR 0.9710  0.0258(1) 0.0298  0.0198(1) 0.0714  0.0043(2) 0.913

average rank 𝑣-SVR 2.7500 2.8750 2.6250 -

LS-SVR 2.3750 2.5000 2.2500 -

𝜀-TSVR 3.6250 3.3750 3.5000 -

𝒗-MADR 1.2500 1.2500 1.6250 -

TABLE 6

THE RESULT COMPARISONS OF 𝒗-SVR, LS-SVR, 𝜺-TSVR AND 𝒗-MADR ON MEDIUM-SCALE DATASETS WITH POLYNOMIAL KERNEL

Dataset regressor 𝑅2 (rank) NMSE (rank) MAPE (rank) CPU(sec)

Diabetes 𝑣-SVR 0.371  0.0931(4) 0.6424  0.1007(4) 1.2135  0.5799(2) 0.001

LS-SVR 0.526  0.0096(2) 0.4901  0.0313(3) 1.4929  0.1274(3) 0.012

𝜀-TSVR 0.525  0.0063(3) 0.4846  0.0214(2) 1.6795  0.1074(4) 0.004

𝒗-MADR 0.549  0.0324(1) 0.4834  0.0317(1) 1.1254  0.0465(1) 0.002

Motorcycle 𝑣-SVR 0.115  0.0106(4) 0.8898  0.0103(4) 1.2730  0.1945(1) 0.001

LS-SVR 0.547  0.0024(3) 0.4544  0.0055(3) 1.6929  0.0356 (4) 0.014

𝜀-TSVR 0.548  0.0010(2) 0.4540  0.0042(2) 1.6771  0.0540 (3) 0.032

𝒗-MADR 0.549  0.0006(1) 0.4516  0.0028(1) 1.6456  0.0315 (2) 0.017

Autoprice 𝑣-SVR 0.881  0.0433(4) 0.1217  0.0551(4) 0.6501  0.1275(4) 0.004

LS-SVR 0.965  0.0109(3) 0.0349  0.0113(3) 0.4184  0.0446(2) 0.043

𝜀-TSVR 0.973  0.0082(2) 0.0315  0.0152(2) 0.4750  0.1303(3) 0.017

𝒗-MADR 0.976  0.0108(1) 0.0256  0.0115(1) 0.4056  0.0772(1) 0.025

Servo 𝑣-SVR 0.545  0.0034(4) 0.4905  0.0079(4) 0.8068  0.0122(4) 0.016

LS-SVR 0.935  0.0385(3) 0.0645  0.0384(3) 0.4870  0.1473(3) 0.020

𝜀-TSVR 0.942  0.0012(2) 0.0576  0.0017(1) 0.4856  0.0112(2) 0.019

𝒗-MADR 0.945  0.0047(1) 0.0631  0.0066(2) 0.4425  0.1647(1) 0.083

Wisconsin 𝑣-SVR 0.203  0.0227(4) 0.8326  0.0357(4) 1.3011  0.0160(2) 0.007

LS-SVR 0.469  0.0021(3) 0.5692  0.0092(3) 1.3614  0.0036(3) 0.095

𝜀-TSVR 0.777  0.0020(1) 0.2439  0.0336(1) 1.3793  0.1926(4) 0.039

𝒗-MADR 0.585  0.0013(2) 0.4577  0.0066(2) 0.8205  0.0081(1) 0.041

MachineCPU 𝑣-SVR 0.933  0.0175(4) 0.0682  0.0171(4) 1.3525  0.2995(4) 0.015

LS-SVR 0.999  0.0008(3) 0.0006  0.0009(3) 0.1068  0.0696(2) 0.029

𝜀-TSVR 0.999  0.0004(2) 0.0005  0.0005(2) 0.1159  0.0503(3) 0.021

𝒗-MADR 0.999  0.0002(1) 0.0004  0.0003(1) 0.0916  0.0251(1) 0.045

AutoMpg 𝑣-SVR 0.802  0.0127(4) 0.1997  0.0136(4) 1.2530  0.2663(2) 0.080

LS-SVR 0.895  0.0307(2) 0.1047  0.0309(2) 1.2613  0.2146(3) 0.047

𝜀-TSVR 0.892  0.0396(3) 0.1079  0.0356(3) 1.3668  0.0156(4) 0.143

𝒗-MADR 0.922  0.0131(1) 0.0815  0.0154(1) 1.1219  0.2950(1) 0.298

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2992703, IEEE Access

VOLUME XX, 2017 14

WDBC 𝑣-SVR 0.471  0.0198(4) 0.5494  0.0537(4) 0.7195  0.0166(4) 0.061

LS-SVR 0.921  0.0202(2) 0.0812  0.0211(2) 0.0318  0.0094(1) 0.177

𝜀-TSVR 0.902  0.0132(3) 0.0977  0.0124(3) 0.2362  0.0198(3) 0.360

𝒗-MADR 0.980  0.0157(1) 0.0202  0.0062(1) 0.0510  0.0251(2) 1.112

average rank 𝑣-SVR 4.0000 4.0000 2.8750 -

LS-SVR 2.6250 2.7500 2.6250 -

𝜀-TSVR 2.2500 2.0000 3.2500 -

𝒗-MADR 1.1250 1.2500 1.2500 -

TABLE 7
THE OPTIMAL PARAMETERS ON MEDIUM-SCALE DATASETS WITH RBF KERNEL

Dataset 𝑣-SVR LS-SVR 𝜀-TSVR 𝑣-MADR

𝐶 𝜎 𝐶 𝜎 𝑐1 = 𝑐2 𝑐3 = 𝑐4 𝜎 𝐶 𝜆1 = 𝜆2 𝜎

Diabetes 29 2-4 27 24 2-4 2-3 2-2 25 27 2-3

Motorcycle 29 20 24 2-2 2-8 2-6 21 29 29 21

Autoprice 29 2-8 28 2-6 2-6 2-9 2-6 2-9 29 2-6

Servo 26 2-1 29 21 2-9 2-9 2-2 2-7 29 20

Wisconsin 22 2-9 22 29 2-5 22 2-7 2-1 26 2-9

MachineCPU 28 2-9 29 28 2-7 2-9 2-8 2-9 29 2-7

AutoMpg 23 2-3 24 22 2-5 2-7 2-3 2-5 29 2-3

WDBC 22 2-5 23 24 2-5 2-6 2-5 2-9 29 2-4

TABLE 8

THE OPTIMAL PARAMETERS ON MEDIUM-SCALE DATASETS WITH POLYNOMIAL KERNEL

Dataset 𝑣-SVR LS-SVR 𝜀-TSVR 𝑣-MADR

𝐶 𝑑 𝐶 𝑑 𝑐1 = 𝑐2 𝑐3 = 𝑐4 𝑑 𝐶 𝜆1 = 𝜆2 𝑑

Diabetes 2-1 3 2-4 2 2-3 28 2 29 2-5 4

Motorcycle 2-3 2 2-3 6 2-5 27 6 2-4 24 6

Autoprice 2-1 3 2-5 2 2-3 23 2 2-1 23 2

Servo 22 3 2-6 5 2-9 25 4 2-3 2-4 5

Wisconsin 2-3 3 2-9 2 2-1 29 2 29 2-9 3

MachineCPU 20 2 2-2 2 2-8 2-1 2 2-3 2-9 2

AutoMpg 22 3 2-4 3 2-2 29 2 2-3 22 3

WDBC 2-3 3 2-7 2 2-5 24 2 29 2-3 4

 (a) CPU time on medium-scale datasets with RBF kernel (b) CPU time on medium-scale datasets with polynomial kernel

FIGURE 3. The CPU time on medium-scale datasets.

(a) Diabetes (b) Motorcycle

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2992703, IEEE Access

VOLUME XX, 2017 15

(c) Autoprice (d) Servo

(e) Wisconsin (f) MachineCPU

(g) AutoMpg (h) WDBC

FIGURE 4. The absolute regression deviation mean and variance of 𝒗-MADR with RBF kernel on medium-scale datasets.

(a) Influence of parameter 𝜆1 on NMSE (b) Influence of parameter 𝜆1 on time

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2992703, IEEE Access

VOLUME XX, 2017 16

(c) Influence of parameter 𝜆2 on NMSE (d) Influence of parameter 𝜆2 on time

(e) Influence of parameter 𝐶 on NMSE (f) Influence of parameter 𝐶 on time

(g) Influence of parameter 𝜎 on NMSE (h) Influence of parameter 𝜎 on time

FIGURE 5. Parameter influence on NMSE and CPU time on medium-scale datasets with RBF kernel.

C. LARGE-SCALE DATASETS

Table 9 lists the experimental results on six large-scale

datasets with linear kernel. We have additionally added a

comparison of linear 𝜀 -SVR, which was solved by

LIBLINEAR [50] that can handle large-scale datasets. In this

experiment, because the datasets are too large, for each dataset,

2/3 of the dataset is randomly selected as the training set for

feature selection, and the rest 1/3 of the dataset is used as the

test set for evaluation. From the average rank at the bottom of

Table 9, the overall performance of 𝑣-MADR is better than

other compared methods or is highly competitive. The optimal

parameters are listed in Table 10. Figure 6 shows the

comparisons of CPU time. From Figure 6, linear kernel 𝑣-

MADR is the fastest learning method. In particular, the CPU

time of linear kernel 𝑣-MADR is far superior to 𝑣-SVR, LS-

SVR and 𝜀-TSVR.

TABLE 9

THE RESULT COMPARISONS OF 𝒗-SVR, LS-SVR, 𝜺-TSVR, 𝜺-SVR AND 𝒗 -MADR ON LARGE-SCALE DATASETS WITH LINEAR KERNEL

Dataset regressor 𝑅2 (rank) NMSE (rank) MAPE (rank) CPU(sec)

ConcreteCS 𝑣-SVR 0.5849  0.0511(4) 0.4180  0.0535(4) 2.1691  0.4274(4) 2.1470

LS-SVR 0.6030  0.0440(2) 0.4033  0.0504(2) 2.0463  0.6259(2) 0.1371

𝜀-TSVR 0.5934  0.0483(3) 0.4076  0.0476(3) 2.0746  0.5095(3) 0.6757

LIBLINEAR 0.3945  0.0493(5) 0.7194  0.1146(5) 3.9093  2.1885(5) 0.0040

𝒗-MADR 0.6124  0.0251(1) 0.3925  0.0278(1) 1.8771  0.6436(1) 0.0024

Abalone 𝑣-SVR 0.5237  0.0399(3) 0.4838  0.0403(3) 3.3437  0.3106(2) 73.7317

LS-SVR 0.5103  0.0345(4) 0.4921  0.0351(4) 3.4757  0.4091(5) 1.7781

𝜀-TSVR 0.5310  0.0267(2) 0.4712  0.0286(2) 3.4732  0.2775(4) 14.2850

LIBLINEAR 0.3605  0.0295(5) 0.6708  0.0586(5) 3.3933  0.6411(3) 0.0337

𝒗-MADR 0.5491  0.0322(1) 0.4569  0.0370(1) 3.2690  0.2572(1) 0.0065

CPUsmall 𝑣-SVR 0.6918  0.0371(5) 0.3120  0.0398(5) 4.8450  0.8492(2) 0.7953

LS-SVR 0.7140  0.0185(3) 0.2882  0.0192(2) 6.0237  1.3026(5) 10.8428

𝜀-TSVR 0.7160  0.0285(2) 0.2994  0.0627(4) 5.6246  1.0662(3) 40.5285

LIBLINEAR 0.8579  0.0320(1) 0.2138  0.0367(1) 1.0918  0.3100(1) 0.0626

𝑣-MADR 0.7107  0.0251(4) 0.2928  0.0281(3) 5.8786  0.5713(4) 0.0183

Bike 𝑣-SVR 0.3054  0.0237(4) 0.7102  0.0418(4) 2.0073  0.2880(1) 33.9155

LS-SVR 0.3116  0.0108(2) 0.6887  0.0109(2) 2.1121  0.2953(3) 20.2850

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2992703, IEEE Access

VOLUME XX, 2017 17

𝜀-TSVR 0.3088  0.0160(3) 0.6916  0.0167(3) 2.1389  0.3706(4) 60.5827

LIBLINEAR 0.1456  0.0249(5) 1.2910  0.0973(5) 4.5741  0.4089(5) 0.0725

𝒗-MADR 0.3124  0.0101(1) 0.6879  0.0112(1) 2.0562  0.3886(2) 0.0200

Driftdataset 𝑣-SVR 0.5838  0.0294(4) 0.4223  0.0341(3) 0.6057  0.0099(4) 58.8105

LS-SVR 0.4904  0.2335(5) 0.6566  0.4629(5) 0.5328  0.0617(1) 105.9514

𝜀-TSVR 0.6018  0.0916(3) 0.4035  0.0959(2) 0.5932  0.0931(2) 182.7503

LIBLINEAR 0.6219  0.0285(1) 0.4270  0.0174(4) 0.7941  0.0161(5) 1.5930

𝒗-MADR 0.6145  0.0946(2) 0.3980  0.0456(1) 0.5966  0.0461(3) 0.6395

Cadate 𝑣-SVR 0.6179  0.0138(3) 0.3845  0.0162(3) 2.3677  0.3229(3) 49.4465

LS-SVR N/A(5) N/A(5) N/A(5) N/A

𝜀-TSVR 0.6204  0.0061(2) 0.3799  0.0062(2) 2.3034  0.1976(2) 304.7820

LIBLINEAR 0.4728  0.0132(4) 0.8760  0.0356(4) 5.0565  1.6076(4) 0.1007

𝒗-MADR 0.6207  0.0158(1) 0.3795  0.0169(1) 2.1349  0.3066(1) 0.0356

average rank

𝑣-SVR 3.8333 3.6667 2.6667 -

LS-SVR 3.5000 3.3333 3.5000 -

𝜀-TSVR 2.5000 2.6667 3.0000 -

LIBLINEAR 3.5000 4.0000 3.8333 -

𝒗-MADR 1.6667 1.3333 2.0000 -

TABLE 10

THE OPTIMAL PARAMETERS ON LARGE-SCALE DATASETS WITH LINEAR KERNEL.

Dataset

𝑣-SVR LS-SVR 𝜀-TSVR LIBLINEAR 𝑣-MADR

𝐶 𝐶 𝑐1 = 𝑐2 𝑐3 = 𝑐4 𝐶 𝐶 𝜆1 𝜆2

ConcreteCS 27 21 2-3 21 2-9 29 2-2 2-5

Abalone 29 29 2-3 2-1 2-5 29 2-8 23

CPUsmall 2-8 2-6 2-9 27 2-4 29 2-8 25

Bike 25 2-5 2-9 24 2-9 29 24 23

Driftdataset 2-9 2-6 2-7 27 28 23 2-5 2-9

Cadate 23 N/A 2-7 25 21 29 2-1 2-7

 (a) CPU time on large datasets with linear kernel (b) A closer look at the CPU time in the range of [0,0.7] sec on large datasets

FIGURE 6. The CPU time on large datasets with linear kernel.

V. CONCLUSIONS

In this research, we introduce statistical information into 𝑣-

SVR and propose a novel SVR method called 𝑣-MADR. 𝑣-

MADR improves the performance of SVR and overcomes the

limitations of existing SVR algorithms by minimizing both the

absolute regression deviation mean and the absolute

regression deviation variance, which takes into account both

the positive and negative values of the regression deviation of

sample points. 𝑣-MADR proposes a dual coordinate descent

(DCD) algorithm for small sample problems, and we also

propose an averaged stochastic gradient descent (ASGD)

algorithm for large-scale problems, which greatly reduces the

computational complexity and thus improves the algorithm

speed. We provide a theoretical analysis on the boundary of

the expectation of error for 𝑣-MADR. Experimental results

have shown that 𝑣 -MADR outperforms several regression

methods and demonstrates great application potential. Our 𝑣-

MADR Matlab codes can be accessed from:

https://github.com/AsunaYY/v-MADR.

In the near future, we will further investigate the potential

of 𝑣-MADR for big data problems, e.g., predictive analysis for

bioinformatics and systems biology problems, and problems

in finance. We envision a great application potential in these

problems.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2992703, IEEE Access

VOLUME XX, 2017 18

REFERENCES
[1] A. J. Smola and B. Scholkopf, "A tutorial on support vector regression,"

Statistics and Computing, vol. 14, no. 3, pp. 199-222, 2004.

[2] A. J. Smola and B. Scholkopf, Learning with Kernels. (1st. ed.). 1998.

[3] J. D. Brown, M. F. Summers, and B. A. Johnson, "Prediction of hydrogen
and carbon chemical shifts from RNA using database mining and support

vector regression," Journal of Biomolecular Nmr, vol. 63, no. 1, pp. 39-

52, 2015.
[4] P. K. Rajaraman, T. A. Manteuffel, M. Belohlavek, E. McMahon, and J.

J. Heys, "Echocardiographic particle imaging velocimetry data

assimilation with least square finite element methods," Computers &
Mathematics with Applications, vol. 68, no. 11, pp. 1569-1580, 2014.

[5] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R.
Salakhutdinov, "Dropout: A Simple Way to Prevent Neural Networks

from Overfitting," Journal of Machine Learning Research, vol. 15, pp.

1929-1958, 2014.
[6] Y. Ke, B. Fu, and W. Zhang, "Semi-varying coefficient multinomial

logistic regression for disease progression risk prediction," Statistics in

Medicine, vol. 35, no. 26, pp. 4764-4778, 2016.
[7] L. H. Dicker, "Ridge regression and asymptotic minimax estimation over

spheres of growing dimension," Bernoulli, vol. 22, no. 1, pp. 1-37, 2016.

[8] R. M. Balabin and E. I. Lomakina, "Support vector machine regression
(SVR/LS-SVM)—an alternative to neural networks (ANN) for analytical

chemistry? Comparison of nonlinear methods on near infrared (NIR)

spectroscopy data," Analyst, vol. 136, no. 8, pp. 1703-1712, 2011.
[9] I. Khosravi, Y. Jouybari-Moghaddam, and M. R. Sarajian, "The

comparison of NN, SVR, LSSVR and ANFIS at modeling meteorological

and remotely sensed drought indices over the eastern district of Isfahan,
Iran," Natural Hazards, vol. 87, no. 3, pp. 1507-1522, 2017.

[10] N. Suyaroj, N. Theera-Umpon, and S. Auephanwiriyakul, "A comparison

of NN-based and SVR-based power prediction for mobile DS/CDMA
systems," in 2008 International Symposium on Intelligent Signal

Processing and Communications Systems, pp. 1-4, 2009.

[11] C.-C. Chang and C.-J. Lin, "LIBSVM: A Library for Support Vector
Machines," Acm Transactions on Intelligent Systems and Technology, vol.

2, no. 3, 2011.

[12] B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett, "New
Support Vector Algorithms," Neural Computation, vol. 12, no. 5, pp.

1207-1245, 2000.

[13] J. A. K. Suykens, L. Lukas, P. Van Dooren, B. De Moor, and J.
Vandewalle, "Least squares support vector machine classifiers: a large

scale algorithm," European Conference on Circuit Theory and Design,

vol. 99, 1999.
[14] J. A. K. Suykens and J. Vandewalle, "Least squares support vector

machine classifiers," Neural Processing Letters, vol. 9, no. 3, pp. 293-300,

1999.
[15] X. Peng, "TSVR: An efficient Twin Support Vector Machine for

regression," Neural Networks, vol. 23, no. 3, pp. 365-372, 2010.

[16] Y. H. Shao, C. H. Zhang, Z. M. Yang, L. Jing, and N. Y. Deng, "An ε-

twin support vector machine for regression," Neural Computing &

Applications, vol. 23, no. 1, pp. 175-185, 2013.

[17] Z.-M. Yang, X.-Y. Hua, Y.-H. Shao, and Y.-F. Ye, "A novel parametric-
insensitive nonparallel support vector machine for regression,"

Neurocomputing, vol. 171, pp. 649-663, 2016.

[18] S. Balasundaram and G. Benipal, "On a new approach for Lagrangian
support vector regression," Neural Computing and Applications, vol. 29,

no. 9, pp. 533-551, 2018.

[19] S. Balasundaram and D. Gupta, "On implicit Lagrangian twin support
vector regression by Newton method," International Journal of

Computational Intelligence Systems, vol. 7, no. 1, pp. 50-64, 2014.

[20] T. Zhang and Z.-H. Zhou, "Large margin distribution machine," in 20th
ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pp. 313-322, 2014.
[21] Z.-H. Zhou, "Large margin distribution learning," in 6th IAPR TC3

International Workshop on Artificial Neural Networks for Pattern

Recognition, vol. 8774, pp. 1-11, 2014.

[22] T. Zhang and Z.-H. Zhou, "Optimal Margin Distribution Machine," IEEE

Transactions on Knowledge and Data Engineering, pp. 1-1, 2019.

[23] W. Gao and Z.-H. Zhou, "On the doubt about margin explanation of
boosting," Artificial Intelligence, vol. 203, pp. 1-18, 2013.

[24] M.-Z. Liu, Y.-H. Shao, Z. Wang, C.-N. Li, and W.-J. Chen, "Minimum

deviation distribution machine for large scale regression," Knowledge-

Based Systems, vol. 146, pp. 167-180, 2018.
[25] R. Rastogi, P. Anand, and S. Chandra, "Large-margin Distribution

Machine-based regression," Neural Computing and Applications, vol. 32,

no. 8, pp. 3633-3648, 2020.
[26] P. Anand, R. Rastogi, and S. Chandra, "Generalized ε—Loss Function-

Based Regression," in Machine Intelligence and Signal Analysis, pp. 395-

409, 2019.
[27] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,

"LIBLINEAR: A library for large linear classification," Journal of

Machine Learning Research, vol. 9, pp. 1871-1874, 2008.
[28] B. Gu, V. S. Sheng, Z. Wang, D. Ho, S. Osman, and S. Li, "Incremental

learning for v-Support Vector Regression," Neural Networks, vol. 67, pp.

140-150, 2015.
[29] B. Gu, V. S. Sheng, K. Y. Tay, W. Romano, and S. Li, "Incremental

Support Vector Learning for Ordinal Regression," Ieee Transactions on

Neural Networks and Learning Systems, vol. 26, no. 7, pp. 1403-1416,
2015.

[30] B. Gu and V. S. Sheng, "A Robust Regularization Path Algorithm for v-

Support Vector Classification," IEEE Transactions on Neural Networks
and Learning Systems, vol. 28, no. 5, pp. 1241-1248, 2017.

[31] D. J. Crisp and C. J. C. Burges, "A geometric interpretation of v-SVM

classifiers," in 13th Annual Neural Information Processing Systems
Conference, pp. 244-250, 2000.

[32] J. S. Marron, M. J. Todd, and J. Ahn, "Distance-weighted
discrimination," Journal of the American Statistical Association, vol. 102,

no. 480, pp. 1267-1271, 2007.

[33] B. Schölkopf, "Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond," Publications of the American

Statistical Association, vol. 98, no. 462, pp. 489-489, 2003.

[34] A. F. Izmailov and M. V. Solodov, "Karush-Kuhn-Tucker systems:
regularity conditions, error bounds and a class of Newton-type methods,"

Mathematical Programming, vol. 95, no. 3, pp. 631-650, 2003.

[35] D. Angulta, A. Ghio, S. Pischiutta, and S. Ridella, "A support vector
machine with integer parameters," Neurocomputing, vol. 72, no. 1-3, pp.

480-489, 2008.

[36] L. Oneto, A. Ghio, S. Ridella, and D. Anguita, "Learning Resource-
Aware Classifiers for Mobile Devices: From Regularization to Energy

Efficiency," Neurocomputing, vol. 169, pp. 225-235, 2015.

[37] L. Oneto, J. L. R. Ortiz, and D. Anguita, "Constraint-Aware Data
Analysis on Mobile Devices: An Application to Human Activity

Recognition on Smartphones," In Adaptive Mobile Computing, 2017.

[38] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan,
"A dual coordinate descent method for large-scale linear SVM," in 25th

International Conference on Machine Learning, pp. 408-415, 2008.

[39] G.-X. Yuan, C.-H. Ho, and C.-J. Lin, "Recent Advances of Large-Scale
Linear Classification," Proceedings of the Ieee, vol. 100, no. 9, pp. 2584-

2603, 2012.

[40] B. T. Polyak and A. B. Juditsky, "Acceleration of stochastic
approximation by averaging," SIAM Journal on Control and Optimization,

vol. 30, no. 4, pp. 838-855, 1992.

[41] H. Kushner and G. G. Yin, Stochastic approximation and recursive
algorithms and applications. Springer Science & Business Media, 2003.

[42] L. Bottou, Large-Scale Machine Learning with Stochastic Gradient

Descent. 2010.
[43] T. Zhang, "Solving large scale linear prediction problems using stochastic

gradient descent algorithms," in Proceedings, Twenty-First International

Conference on Machine Learning, pp. 919-926, 2004.
[44] S. Shalev-Shwartz, Y. Singer, and N. Srebro, "Pegasos: Primal estimated

sub-GrAdient sOlver for SVM," in 24th International Conference on

Machine Learning, vol. 227, pp. 807-814, 2007.
[45] A. Bordes, L. Bottou, and P. Gallinari, "SGD-QN: Careful Quasi-Newton

Stochastic Gradient Descent," Journal of Machine Learning Research,

vol. 10, pp. 1737-1754, 2009.
[46] O. Shamir and T. Zhang, "Stochastic gradient descent for non-smooth

optimization: Convergence results and optimal averaging schemes," in

30th International Conference on Machine Learning, pp. 71-79, 2013.
[47] W. Xu, "Towards Optimal One Pass Large Scale Learning with Averaged

Stochastic Gradient Descent," arXiv e-prints, 2011.

[48] A. Luntz, "On estimation of characters obtained in statistical procedure
of recognition," Technicheskaya Kibernetica, vol. 3, 1969.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2992703, IEEE Access

VOLUME XX, 2017 19

[49] C.-C. Chang and C.-J. Lin, "LIBSVM -- A Library for Support Vector

Machines," ed. https://www.csie.ntu.edu.tw/~cjlin/libsvm, 2018.

[50] Machine Learning Group at National Taiwan University, "LIBLINEAR
-- A Library for Large Linear Classification," ed. https://www.csie.ntu.

edu.tw/~cjlin/liblinear, 2019.

[51] K. Pelckmans et al., " LSSVMlab: A Matlab/c toolbox for least square
support vector machines," ed. http://www.esat.kuleuven.ac.be/sista/

lssvmlab, 2002.

[52] Y.-H. Shao, C.-H. Zhang, X.-B. Wang, and N.-Y. Deng, "Improvements
on Twin Support Vector Machines," Ieee Transactions on Neural

Networks, vol. 22, no. 6, pp. 962-968, 2011.

[53] O. L. Mangasarian and D. R. Musicant, "Successive overrelaxation for
support vector machines," Ieee Transactions on Neural Networks, vol. 10,

no. 5, pp. 1032-1037, 1999.

[54] C. W. Hsu and C. J. Lin, "A comparison of methods for multiclass
support vector machines," Ieee Transactions on Neural Networks, vol. 13,

no. 2, pp. 415-425, 2002.

Yan Wang, Ph.D., graduated from the College of

Computer Science and Technology of Jilin University,

China, in 2007. He is currently a professor and doctoral
supervisor of the College of Computer Science and

Technology of Jilin University. He was doing research

on a bioinformatics collaborative project as a visiting
scholar and postdoctor at University of Georgia, USA

from 2007 to 2011. During 2012 to 2013, he got a

postdoctoral position in University of Trento, Italy. His research interests
focus on Computational Intelligence, Bioinformatics and E-Business, such

as machine learning and deep learning, big data intelligent computing, gene

expression analysis, cancer biomarker prediction and overlapping
community detection. He has had over 70 research papers published

including more than 30 indexed by SCI, such as Nucleic Acids Res, Briefing

in Bioinformatics, Computational and Structural Biotechnology Journal,
Frontiers in Genetics, Scientific Reports, Applied Soft Computing, and

Bioinformatics, etc. And he has also presided over or taken part in several

projects funded by the National Natural Science Foundation and “863”
project in China, respectively.

Yao Wang, Master, graduated from the College of

Computer Science and Technology of Jilin University,
China, in 2019. He is currently pursuing Ph.D. at the

College of Computer Science and Technology of Jilin

University, China. He is also a student in the Jilin
Provincial Key Laboratory of Big Data Intelligent

Computing. His research interests are mainly in the

field of machine learning, deep learning, and medical
image processing.

Yingying Song, Master, is currently studying at the
College of Computer Science and Technology of Jilin

University, China. She received her bachelor's degree

in the College of Computer Science and Technology of
Jilin University, in 2017. She has published two papers

and won two school scholarships. Her research

interests are mainly in the field of machine learning,
regression analysis, feature selection, and deep

learning.

Xuping Xie is currently pursuing a master’s degree at

the College of Computer Science and Technology of

Jilin University, China. She is also a student in the Jilin
Provincial Key Laboratory of Big Data Intelligent

Computing. She studied at the College of Information

Science and Technology of Northeast Normal
University from 2015 to 2019 and obtained a bachelor's

degree. Her research interests are mainly in the field of

machine learning, and deep learning.

LAN HUANG is currently a professor, supervisor of

PhD candidates at Jilin University, Changchun. She
received her B.S., M.S. and Ph.D. degrees in computer

science and technology from Jilin University,

Changchun, in 1994, 1999 and 2003 respectively. She
is mainly engaged in intelligent computing, data

mining theory and application research, and high

performance computing. She is Outstanding Member
of CCF. She won the middle-aged and young experts

with outstanding contributions in Jilin province. She is the director of key

laboratory of big data intelligent computing in Jilin province. As PI and Co-
PI, she has been undertaking or accomplished more than 10 teaching and

scientific research projects, granted by the National 863 Hi-tech Research

and Development Program, the National Science Foundation China,
provincial/ministerial foundations, and other sources. The projects that she

participated as main investigator, were awarded the first prizes for the Jilin

Province Scientific and Technological Progress Award (first prizewinner in
2017, second prizewinner in 2019). In recent five years, she has published

more than 80 academic papers, won 1 second prize for teaching

achievements of Jilin Province (2018), published 4 textbooks as chief editor.

WEI PANG received his Ph.D. degree in computing

science from the University of Aberdeen, in 2009. He

is currently an Associate Professor with Heriot-Watt
University, Edinburgh, U.K. He is also an Honorary

Senior Lecturer at University of Aberdeen, UK. He has

authored over 100 articles, including more than 40
journal articles. His research interests include bio-

inspired computing, data mining, machine learning,

and qualitative reasoning.
Dr. Pang was a recipient of the Best Paper Award in the 19th Annual UK

Workshop on Computational Intelligence (UKCI 2019) and the Best Paper

Runner Up Award in the 12th International Conference on Advanced Data
Mining and Applications (ADMA 2016).

George M. Coghill, Ph.D., graduated from the

Intelligent Systems Laboratory of Heriot-Watt
University on the topic of Fuzzy Qualitative Reasoning.

He was promoted to Reader of Aberdeen in Computing

Science in 2009, and to a Chair in 2011. At Aberdeen
he has undertaken a number of roles. He was Head of

Computing Science from 2010 to 2014; Director of
Research and a Deputy Head of the School of Natural

and Computing Sciences from 2015 to 2018. He has served on a several

committees in the institution including the Academic Standards Committee
(Post-graduate), the Quality Assurance Committee, and the Research Policy

Committee. His research interests are mainly in the field of Model-based

Systems and Qualitative reasoning.

