886 research outputs found

    Easing Embedding Learning by Comprehensive Transcription of Heterogeneous Information Networks

    Full text link
    Heterogeneous information networks (HINs) are ubiquitous in real-world applications. In the meantime, network embedding has emerged as a convenient tool to mine and learn from networked data. As a result, it is of interest to develop HIN embedding methods. However, the heterogeneity in HINs introduces not only rich information but also potentially incompatible semantics, which poses special challenges to embedding learning in HINs. With the intention to preserve the rich yet potentially incompatible information in HIN embedding, we propose to study the problem of comprehensive transcription of heterogeneous information networks. The comprehensive transcription of HINs also provides an easy-to-use approach to unleash the power of HINs, since it requires no additional supervision, expertise, or feature engineering. To cope with the challenges in the comprehensive transcription of HINs, we propose the HEER algorithm, which embeds HINs via edge representations that are further coupled with properly-learned heterogeneous metrics. To corroborate the efficacy of HEER, we conducted experiments on two large-scale real-words datasets with an edge reconstruction task and multiple case studies. Experiment results demonstrate the effectiveness of the proposed HEER model and the utility of edge representations and heterogeneous metrics. The code and data are available at https://github.com/GentleZhu/HEER.Comment: 10 pages. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, United Kingdom, ACM, 201

    Embedding Heterogeneous Networks into Hyperbolic Space Without Meta-path

    Full text link
    Networks found in the real-world are numerous and varied. A common type of network is the heterogeneous network, where the nodes (and edges) can be of different types. Accordingly, there have been efforts at learning representations of these heterogeneous networks in low-dimensional space. However, most of the existing heterogeneous network embedding methods suffer from the following two drawbacks: (1) The target space is usually Euclidean. Conversely, many recent works have shown that complex networks may have hyperbolic latent anatomy, which is non-Euclidean. (2) These methods usually rely on meta-paths, which require domain-specific prior knowledge for meta-path selection. Additionally, different down-streaming tasks on the same network might require different meta-paths in order to generate task-specific embeddings. In this paper, we propose a novel self-guided random walk method that does not require meta-path for embedding heterogeneous networks into hyperbolic space. We conduct thorough experiments for the tasks of network reconstruction and link prediction on two public datasets, showing that our model outperforms a variety of well-known baselines across all tasks.Comment: In proceedings of the 35th AAAI Conference on Artificial Intelligenc

    ASIAM-HGNN: Automatic Selection and Interpretable Aggregation of Meta-Path Instances for Heterogeneous Graph Neural Network

    Get PDF
    In heterogeneous information network (HIN)-based applications, the existing methods usually use Heterogeneous Graph Neural Networks (HGNN) to handle some complex tasks. However, these methods still have some shortcomings: 1) they manually pre-select some meta-paths and thus some important ones are missing, while the missing ones still contains the information and features of the node in the entire graph structure; and 2) they have no high interpretability since they do not consider the logical sequences in an HIN. In order to deal with them, we propose ASIAM-HGNN: a heterogeneous graph neural network combined with the automatic selection and interpretable aggregation of meta-path instances. Our model can automatically filter important meta paths for each node, while preserving the logical sequence between nodes, so as to solve the problems existing in other models. A group of experiments are conducted on real-world datasets, and the results demonstrate that the models learned by our method have a better performance in most of task scenarios

    Semantic-aware Node Synthesis for Imbalanced Heterogeneous Information Networks

    Full text link
    Heterogeneous graph neural networks (HGNNs) have exhibited exceptional efficacy in modeling the complex heterogeneity in heterogeneous information networks (HINs). The critical advantage of HGNNs is their ability to handle diverse node and edge types in HINs by extracting and utilizing the abundant semantic information for effective representation learning. However, as a widespread phenomenon in many real-world scenarios, the class-imbalance distribution in HINs creates a performance bottleneck for existing HGNNs. Apart from the quantity imbalance of nodes, another more crucial and distinctive challenge in HINs is semantic imbalance. Minority classes in HINs often lack diverse and sufficient neighbor nodes, resulting in biased and incomplete semantic information. This semantic imbalance further compounds the difficulty of accurately classifying minority nodes, leading to the performance degradation of HGNNs. To tackle the imbalance of minority classes and supplement their inadequate semantics, we present the first method for the semantic imbalance problem in imbalanced HINs named Semantic-aware Node Synthesis (SNS). By assessing the influence on minority classes, SNS adaptively selects the heterogeneous neighbor nodes and augments the network with synthetic nodes while preserving the minority semantics. In addition, we introduce two regularization approaches for HGNNs that constrain the representation of synthetic nodes from both semantic and class perspectives to effectively suppress the potential noises from synthetic nodes, facilitating more expressive embeddings for classification. The comprehensive experimental study demonstrates that SNS consistently outperforms existing methods by a large margin in different benchmark datasets
    • …
    corecore