20 research outputs found

    Early recognition of multiple sclerosis using natural language processing of the electronic health record

    Get PDF
    Background Diagnostic accuracy might be improved by algorithms that searched patients’ clinical notes in the electronic health record (EHR) for signs and symptoms of diseases such as multiple sclerosis (MS). The focus this study was to determine if patients with MS could be identified from their clinical notes prior to the initial recognition by their healthcare providers. Methods An MS-enriched cohort of patients with well-established MS (n = 165) and controls (n = 545), was generated from the adult outpatient clinic. A random sample cohort was generated from randomly selected patients (n = 2289) from the same adult outpatient clinic, some of whom had MS (n = 16). Patients’ notes were extracted from the data warehouse and signs and symptoms mapped to UMLS terms using MedLEE. Approximately 1000 MS-related terms occurred significantly more frequently in MS patients’ notes than controls’. Synonymous terms were manually clustered into 50 buckets and used as classification features. Patients were classified as MS or not using Naïve Bayes classification. Results Classification of patients known to have MS using notes of the MS-enriched cohort entered after the initial ICD9[MS] code yielded an ROC AUC, sensitivity, and specificity of 0.90 [0.87-0.93], 0.75[0.66-0.82], and 0.91 [0.87-0.93], respectively. Similar classification accuracy was achieved using the notes from the random sample cohort. Classification of patients not yet known to have MS using notes of the MS-enriched cohort entered before the initial ICD9[MS] documentation identified 40% [23–59%] as having MS. Manual review of the EHR of 45 patients of the random sample cohort classified as having MS but lacking an ICD9[MS] code identified four who might have unrecognized MS. Conclusions Diagnostic accuracy might be improved by mining patients’ clinical notes for signs and symptoms of specific diseases using NLP. Using this approach, we identified patients with MS early in the course of their disease which could potentially shorten the time to diagnosis. This approach could also be applied to other diseases often missed by primary care providers such as cancer. Whether implementing computerized diagnostic support ultimately shortens the time from earliest symptoms to formal recognition of the disease remains to be seen

    A Systematic Review of Natural Language Processing for Knowledge Management in Healthcare

    Full text link
    Driven by the visions of Data Science, recent years have seen a paradigm shift in Natural Language Processing (NLP). NLP has set the milestone in text processing and proved to be the preferred choice for researchers in the healthcare domain. The objective of this paper is to identify the potential of NLP, especially, how NLP is used to support the knowledge management process in the healthcare domain, making data a critical and trusted component in improving the health outcomes. This paper provides a comprehensive survey of the state-of-the-art NLP research with a particular focus on how knowledge is created, captured, shared, and applied in the healthcare domain. Our findings suggest, first, the techniques of NLP those supporting knowledge management extraction and knowledge capture processes in healthcare. Second, we propose a conceptual model for the knowledge extraction process through NLP. Finally, we discuss a set of issues, challenges, and proposed future research areas

    Extracting clinical knowledge from electronic medical records

    Get PDF
    As the adoption of Electronic Medical Records (EMRs) rises in the healthcare institutions, these resources' importance increases because of the clinical information they contain about patients. However, the unstructured information in the form of clinical narratives present in those records, makes it hard to extract and structure useful clinical knowledge. This unstructured information limits the potential of the EMRs, because the clinical information these records contain can be used to perform important tasks inside healthcare institutions such as searching, summarization, decision support and statistical analysis, as well as be used to support management decisions or serve for research. These tasks can only be done if the unstructured clinical information from the narratives is properly extracted, structured and transformed in clinical knowledge. Usually, this extraction is made manually by healthcare practitioners, which is not efficient and is error-prone. This research uses Natural Language Processing (NLP) and Information Extraction (IE) techniques, in order to develop a pipeline system that can extract clinical knowledge from unstructured clinical information present in Portuguese EMRs, in an automated way, in order to help EMRs to fulfil their potential.info:eu-repo/semantics/publishedVersio

    A Systematic Review of Natural Language Processing for Knowledge Management in Healthcare

    Get PDF
    Driven by the visions of Data Science, recent years have seen a paradigm shift in Natural Language Processing (NLP). NLP has set the milestone in text processing and proved to be the preferred choice for researchers in the healthcare domain. The objective of this paper is to identify the potential of NLP, especially, how NLP is used to support the knowledge management process in the healthcare domain, making data a critical and trusted component in improving health outcomes. This paper provides a comprehensive survey of the state-of-the-art NLP research with a particular focus on how knowledge is created, captured, shared, and applied in the healthcare domain. Our findings suggest, first, the techniques of NLP those supporting knowledge management extraction and knowledge capture processes in healthcare. Second, we propose a conceptual model for the knowledge extraction process through NLP. Finally, we discuss a set of issues, challenges, and proposed future research areas

    Calculation of a Primary Immunodeficiency “Risk Vital Sign” via Population-Wide Analysis of Claims Data to Aid in Clinical Decision Support

    Get PDF
    Background: Early diagnosis of primary immunodeficiency disease leads to reductions in illness and decreased healthcare costs. Analysis of electronic health record data may allow for identification of persons at risk of host-defense impairments from within the general population. Our hypothesis was that coded infection history would inform individual risk of disease and ultimately lead to diagnosis.Methods: In this study we assessed individual risk for primary immunodeficiency by analyzing diagnostic codes and pharmacy records from members (n = 185,892) of a large pediatric health network. Relevant infection-associated diagnostic codes were weighted and enumerated for individual members allowing for risk score calculations (“Risk Vital Sign”). At-risk individuals underwent further assessment by chart review and re-analysis of diagnostic codes 12 months later.Results: Of the original cohort, 2188 (1.2%) individuals were identified as medium-high-risk for having a primary immunodeficiency. This group included 41 subjects who were ultimately diagnosed with primary immunodeficiency. An additional 57 medium-high risk patients had coded diagnoses worthy of referral.Conclusions: Population-wide informatics approaches can facilitate disease detection and improve outcomes. Early identification of the 98 patients with confirmed or suspected primary immunodeficiency described here could represent an annual cost savings of up to $7.7 million US Dollars

    Natural Language Processing of Clinical Notes on Chronic Diseases: Systematic Review

    Get PDF
    Novel approaches that complement and go beyond evidence-based medicine are required in the domain of chronic diseases, given the growing incidence of such conditions on the worldwide population. A promising avenue is the secondary use of electronic health records (EHRs), where patient data are analyzed to conduct clinical and translational research. Methods based on machine learning to process EHRs are resulting in improved understanding of patient clinical trajectories and chronic disease risk prediction, creating a unique opportunity to derive previously unknown clinical insights. However, a wealth of clinical histories remains locked behind clinical narratives in free-form text. Consequently, unlocking the full potential of EHR data is contingent on the development of natural language processing (NLP) methods to automatically transform clinical text into structured clinical data that can guide clinical decisions and potentially delay or prevent disease onset

    Natural language processing and modeling of clinical disease trajectories across brain disorders

    Get PDF
    corecore