26,173 research outputs found

    Using Links to prototype a Database Wiki

    Get PDF
    Both relational databases and wikis have strengths that make them attractive for use in collaborative applications. In the last decade, database-backed Web applications have been used extensively to develop valuable shared biological references called curated databases. Databases offer many advantages such as scalability, query optimization and concurrency control, but are not easy to use and lack other features needed for collaboration. Wikis have become very popular for early-stage biocuration projects because they are easy to use, encourage sharing and collaboration, and provide built-in support for archiving, history-tracking and annotation. However, curation projects often outgrow the limited capabilities of wikis for structuring and efficiently querying data at scale, necessitating a painful phase transition to a database-backed Web application. We perceive a need for a new class of general-purpose system, which we call a Database Wiki, that combines flexible wiki-like support for collaboration with robust database-like capabilities for structuring and querying data. This paper presents DBWiki, a design prototype for such a system written in the Web programming language Links. We present the architecture, typical use, and wiki markup language design for DBWiki and discuss features of Links that provided unique advantages for rapid Web/database application prototyping

    Temporal Support in Relational Databases

    Get PDF
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. © 2012 Higher Education AcademyThis paper examines the current state of temporal support in relational databases and the type of situations where we need that support. There has been much research in this area and there were attempts in the American National Standards Institute (ANSI) and the International Organisation for Standardisation (ISO) standards committees in the late 1990s to add an extension called TSQL2 to the existing SQL standard. However no agreement could be reached as it was felt that some of the suggested extensions did not fit well with the relational model, as well as being difficult to implement. TSQL2 was abandoned and since then vendors have added their own data types, and if we are lucky, operators too in an attempt to provide support. However, to novice students and database designers it is often not apparent why some temporal concepts are difficult to deal with in a relational database. In teaching these concepts to students we use a Case Study (based on a real example) which illustrates the problems of providing temporal support by using examples of the data types which could be useful to solve temporal problems and the operators which are necessary to provide this

    Online learning and fun with databases

    Get PDF
    In this paper, we explore how online learning can support face-to-face teaching in fundamental database theory and the contributions it can make towards motivating and enhancing the student learning experience. We show how we have used WebCT for a third level database module and present student feedback to our approach. While online participation is high overall, motivation for self-learning is increased by the use of self-assessment exercises and summative assessment was also considered to be more fun online than using paper based equivalents. Evidence exists to link greater online participation of course materials to improved performance. We complement our feedback by presenting and discussing a number of software tools which help students practice important methods in database systems, including SQL. After evaluating these against known methods for improving student motivation, we suggest ideas for further development of more game-like learning tools

    Implementing Performance Competitive Logical Recovery

    Full text link
    New hardware platforms, e.g. cloud, multi-core, etc., have led to a reconsideration of database system architecture. Our Deuteronomy project separates transactional functionality from data management functionality, enabling a flexible response to exploiting new platforms. This separation requires, however, that recovery is described logically. In this paper, we extend current recovery methods to work in this logical setting. While this is straightforward in principle, performance is an issue. We show how ARIES style recovery optimizations can work for logical recovery where page information is not captured on the log. In side-by-side performance experiments using a common log, we compare logical recovery with a state-of-the art ARIES style recovery implementation and show that logical redo performance can be competitive.Comment: VLDB201
    corecore