9 research outputs found

    Trend Detection based Regret Minimization for Bandit Problems

    Full text link
    We study a variation of the classical multi-armed bandits problem. In this problem, the learner has to make a sequence of decisions, picking from a fixed set of choices. In each round, she receives as feedback only the loss incurred from the chosen action. Conventionally, this problem has been studied when losses of the actions are drawn from an unknown distribution or when they are adversarial. In this paper, we study this problem when the losses of the actions also satisfy certain structural properties, and especially, do show a trend structure. When this is true, we show that using \textit{trend detection}, we can achieve regret of order O~(NTK)\tilde{O} (N \sqrt{TK}) with respect to a switching strategy for the version of the problem where a single action is chosen in each round and O~(NmTK)\tilde{O} (Nm \sqrt{TK}) when mm actions are chosen each round. This guarantee is a significant improvement over the conventional benchmark. Our approach can, as a framework, be applied in combination with various well-known bandit algorithms, like Exp3. For both versions of the problem, we give regret guarantees also for the \textit{anytime} setting, i.e. when the length of the choice-sequence is not known in advance. Finally, we pinpoint the advantages of our method by comparing it to some well-known other strategies

    Efficient Change-Point Detection for Tackling Piecewise-Stationary Bandits

    Get PDF
    International audienceWe introduce GLR-klUCB, a novel algorithm for the piecewise iid non-stationary bandit problem with bounded rewards. This algorithm combines an efficient bandit algorithm, kl-UCB, with an efficient, parameter-free, changepoint detector, the Bernoulli Generalized Likelihood Ratio Test, for which we provide new theoretical guarantees of independent interest. Unlike previous non-stationary bandit algorithms using a change-point detector, GLR-klUCB does not need to be calibrated based on prior knowledge on the arms' means. We prove that this algorithm can attain a O(TAΥTlog(T))O(\sqrt{TA \Upsilon_T\log(T)}) regret in TT rounds on some ``easy'' instances, where A is the number of arms and ΥT\Upsilon_T the number of change-points, without prior knowledge of ΥT\Upsilon_T. In contrast with recently proposed algorithms that are agnostic to ΥT\Upsilon_T, we perform a numerical study showing that GLR-klUCB is also very efficient in practice, beyond easy instances
    corecore