5 research outputs found

    Turbo Packet Combining Strategies for the MIMO-ISI ARQ Channel

    Full text link
    This paper addresses the issue of efficient turbo packet combining techniques for coded transmission with a Chase-type automatic repeat request (ARQ) protocol operating over a multiple-input--multiple-output (MIMO) channel with intersymbol interference (ISI). First of all, we investigate the outage probability and the outage-based power loss of the MIMO-ISI ARQ channel when optimal maximum a posteriori (MAP) turbo packet combining is used at the receiver. We show that the ARQ delay (i.e., the maximum number of ARQ rounds) does not completely translate into a diversity gain. We then introduce two efficient turbo packet combining algorithms that are inspired by minimum mean square error (MMSE)-based turbo equalization techniques. Both schemes can be viewed as low-complexity versions of the optimal MAP turbo combiner. The first scheme is called signal-level turbo combining and performs packet combining and multiple transmission ISI cancellation jointly at the signal-level. The second scheme, called symbol-level turbo combining, allows ARQ rounds to be separately turbo equalized, while combining is performed at the filter output. We conduct a complexity analysis where we demonstrate that both algorithms have almost the same computational cost as the conventional log-likelihood ratio (LLR)-level combiner. Simulation results show that both proposed techniques outperform LLR-level combining, while for some representative MIMO configurations, signal-level combining has better ISI cancellation capability and achievable diversity order than that of symbol-level combining.Comment: 13 pages, 7 figures, and 2 table

    MIMO-aided near-capacity turbo transceivers: taxonomy and performance versus complexity

    No full text
    In this treatise, we firstly review the associated Multiple-Input Multiple-Output (MIMO) system theory and review the family of hard-decision and soft-decision based detection algorithms in the context of Spatial Division Multiplexing (SDM) systems. Our discussions culminate in the introduction of a range of powerful novel MIMO detectors, such as for example Markov Chain assisted Minimum Bit-Error Rate (MC-MBER) detectors, which are capable of reliably operating in the challenging high-importance rank-deficient scenarios, where there are more transmitters than receivers and hence the resultant channel-matrix becomes non-invertible. As a result, conventional detectors would exhibit a high residual error floor. We then invoke the Soft-Input Soft-Output (SISO) MIMO detectors for creating turbo-detected two- or three-stage concatenated SDM schemes and investigate their attainable performance in the light of their computational complexity. Finally, we introduce the powerful design tools of EXtrinsic Information Transfer (EXIT)-charts and characterize the achievable performance of the diverse near- capacity SISO detectors with the aid of EXIT charts

    Dispensing with channel estimation: differentially modulated cooperative wireless communications

    No full text
    As a benefit of bypassing the potentially excessive complexity and yet inaccurate channel estimation, differentially encoded modulation in conjunction with low-complexity noncoherent detection constitutes a viable candidate for user-cooperative systems, where estimating all the links by the relays is unrealistic. In order to stimulate further research on differentially modulated cooperative systems, a number of fundamental challenges encountered in their practical implementations are addressed, including the time-variant-channel-induced performance erosion, flexible cooperative protocol designs, resource allocation as well as its high-spectral-efficiency transceiver design. Our investigations demonstrate the quantitative benefits of cooperative wireless networks both from a pure capacity perspective as well as from a practical system design perspective

    EXIT Chart-Aided Adaptive Coding for Multilevel BICM With Turbo Equalization in Frequency-Selective MIMO Channels

    Get PDF
    This paper proposes an adaptive coding (AC) scheme for multilevel bit-interleaved coded modulation (ML-BICM) with minimum mean-square error (MMSE) turbo equalization in frequency-selective multiple-input-multiple-output (MIMO) channels. The aim of this paper is to minimize the information rate loss due to the mismatch between channel realization and channel coding. With the aid of the knowledge about extrinsic information transfer characteristics at the receiver, code parameters such as code rates and/or generator polynomials are adaptively selected independently for each ML-BICM layer. Model-based simulation results show that an achievable average throughput can be significantly improved with the proposed AC technique over automatic repeat request with fixed coding rate. Furthermore, the advantageous points of the proposed scheme are verified through field-measurement-data-based simulations

    Low-complexity soft-decision feedback turbo equalization for multilevel modulations

    Get PDF
    This dissertation proposes two new decision feedback equalization schemes suitable for multilevel modulation systems employing turbo equalization. One is soft-decision feedback equalization (SDFE) that takes into account the reliability of both soft a priori information and soft decisions of the data symbols. The proposed SDFE exhibits lower signal to noise ratio (SNR) threshold that is required for water fall bit error rate (BER) and much faster convergence than the near-optimal exact minimum mean square error linear equalizer (Exact-MMSE-LE) for high-order constellation modulations. The proposed SDFE also offers a low computational complexity compared to the Exact-MMSE-LE. The drawback of the SDFE is that its coefficients cannot reach the matched filter bound (MFB) and therefore after a large number of iterations (e.g. 10), its performance becomes inferior to that of the Exact-MMSE-LE. Therefore, soft feedback intersymbol interference (ISI) canceller-based (SIC) structure is investigated. The SIC structure not only exhibits the same low complexity, low SNR threshold and fast convergence as the SDFE but also reaches the MFB after a large number of iterations. Both theoretical analysis and numerical simulations demonstrate why the SIC achieves MFB while the SDFE cannot. These two turbo equalization structures are also extended from single-input single-output (SISO) systems to multiple-input multiple-output (MIMO) systems and applied in high data-rate underwater acoustic (UWA) communications --Abstract, page iv
    corecore