895 research outputs found
Multistep, sequential control of the trafficking and function of the multiple sulfatase deficiency gene product, SUMF1 by PDI, ERGIC-53 and ERp44.
Sulfatase modifying factor 1 (SUMF1) encodes for the formylglicine generating enzyme, which activates sulfatases by modifying a key cysteine residue within their catalytic domains. SUMF1 is mutated in patients affected by multiple sulfatase deficiency, a rare recessive disorder in which all sulfatase activities are impaired. Despite the absence of canonical retention/retrieval signals, SUMF1 is largely retained in the endoplasmic reticulum (ER), where it exerts its enzymatic activity on nascent sulfatases. Part of SUMF1 is secreted and paracrinally taken up by distant cells. Here we show that SUMF1 interacts with protein disulfide isomerase (PDI) and ERp44, two thioredoxin family members residing in the early secretory pathway, and with ERGIC-53, a lectin that shuttles between the ER and the Golgi. Functional assays reveal that these interactions are crucial for controlling SUMF1 traffic and function. PDI couples SUMF1 retention and activation in the ER. ERGIC-53 and ERp44 act downstream, favoring SUMF1 export from and retrieval to the ER, respectively. Silencing ERGIC-53 causes proteasomal degradation of SUMF1, while down-regulating ERp44 promotes its secretion. When over-expressed, each of three interactors favors intracellular accumulation. Our results reveal a multistep control of SUMF1 trafficking, with sequential interactions dynamically determining ER localization, activity and secretion
ER-Mitochondria contact sites : a new regulator of cellular calcium flux comes into play
Endoplasmic reticulum (ER)-mitochondria membrane contacts are hotspots for calcium signaling. In this issue, Raturi et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201512077) show that the thioredoxin TMX1 inhibits the calcium pump SERCA2b at ER-mitochondria contact sites, thereby affecting ER-mitochondrial calcium transfer and mitochondrial bioenergetics
EXPRESSION OF ENDOPLASMIC RETICULUM OXIDOREDUCTASES (EROS) AND THEIR ROLE IN THE GI TRACT
It has been shown that some ER redox enzymes are differentially expressed in stomach and oesophagus tissue. The tissues of the gastrointestinal system, which are subject to external changes of environment during the process of digestion, represent a novel area in which human ER oxidoreductases (Eros) can be studied.
Barrett's oesophagus is a common premalignant condition characterised by acid and bile reflux. We hypothesised that the development of metaplastic tissue in Barrettʼs may be associated with changes in the expression of Eros, and that the environment of gastric reflux could drive oxidative changes in the structure of Eros.
In this thesis, it is shown that Ero1α is expressed at a higher level in OE33 oesophageal adenocarcinoma cells than in OE21 oesophageal squamous carcinoma cells. Ero1β is not expressed in these cells. Altering pH or culture media or bile acid treatment does not cause any detectable changes in the expression or oxidation state of Ero1α, Ero1β or Protein Disulphide Isomerases (PDIs) in the OE21 and OE33 cell lines.
Human Ero1β was produced as a recombinant HIS-tagged protein, which was inactive when thioredoxin was used as a substrate, but could oxidise PDI in vitro. Attempts were made to produce redox-state specific antibodies against either Ero1α or Ero1β. Ero1α and Ero1β-HIS recombinant proteins were used to produce hybridomas, which were tested for Ero1α or Ero1β specificity in rodent tissue and cell lines
Proteome-wide analysis of cysteine oxidation reveals metabolic sensitivity to redox stress
Reactive oxygen species (ROS) are increasingly recognised as important signalling molecules through oxidation of protein cysteine residues. Comprehensive identification of redox-regulated proteins and pathways is crucial to understand ROS-mediated events. Here, we present stable isotope cysteine labelling with iodoacetamide (SICyLIA), a mass spectrometry-based workflow to assess proteome-scale cysteine oxidation. SICyLIA does not require enrichment steps and achieves unbiased proteome-wide sensitivity. Applying SICyLIA to diverse cellular models and primary tissues provides detailed insights into thiol oxidation proteomes. Our results demonstrate that acute and chronic oxidative stress causes oxidation of distinct metabolic proteins, indicating that cysteine oxidation plays a key role in the metabolic adaptation to redox stress. Analysis of mouse kidneys identifies oxidation of proteins circulating in biofluids, through which cellular redox stress can affect whole-body physiology. Obtaining accurate peptide oxidation profiles from complex organs using SICyLIA holds promise for future analysis of patient-derived samples to study human pathologies
High-resolution NMR studies of structure and dynamics of human ERp27 indicate extensive interdomain flexibility
ERp27 (endoplasmic reticulum protein 27.7 kDa) is a homologue of PDI (protein disulfide-isomerase) localized to the endoplasmic reticulum. ERp27 is predicted to consist of two thioredoxinfold domains homologous with the non-catalytic b and b domains of PDI. The structure in solution of the N-terminal blike domain of ERp27 was solved using high-resolution NMR data. The structure confirms that it has the thioredoxin fold and that ERp27 is a member of the PDI family. 15N-NMR relaxation data were obtained and ModelFree analysis highlighted limited exchange contributions and slow internal motions, and
indicated that the domain has an average order parameter S 2 of 0.79. Comparison of the single-domain structure determined in the present study with the equivalent domain within fulllength ERp27, determined independently by X-ray diffraction, indicated very close agreement. The domain interface inferred from NMR data in solution was much more extensive than that observed in the X-ray structure, suggesting that the domains flex independently and that crystallization selects one specific
interdomain orientation. This led us to apply a new rapid method to simulate the flexibility of the full-length protein, establishing that the domains show considerable freedom to flex (tilt and twist) about the interdomain linker, consistent with the NMR data
Molecular Determinants of the Regulation of Development and Metabolism by Neuronal eIF2α Phosphorylation in
Cell-nonautonomous effects of signaling in the nervous system of animals can influence diverse aspects of organismal physiology. We previously showed that phosphorylation of Ser49 of the α-subunit of eukaryotic translation initiation factor 2 (eIF2α) in two chemosensory neurons by PEK-1/PERK promotes entry of Caenorhabditis elegans into dauer diapause. Here, we identified and characterized the molecular determinants that confer sensitivity to effects of neuronal eIF2α phosphorylation on development and physiology of C. elegans. Isolation and characterization of mutations in eif-2Ba encoding the α-subunit of eIF2B support a conserved role, previously established by studies in yeast, for eIF2Bα in providing a binding site for phosphorylated eIF2α to inhibit the exchange factor eIF2B catalytic activity that is required for translation initiation. We also identified a mutation in eif-2c, encoding the γ-subunit of eIF2, which confers insensitivity to the effects of phosphorylated eIF2α while also altering the requirement for eIF2Bγ. In addition, we show that constitutive expression of eIF2α carrying a phosphomimetic S49D mutation in the ASI pair of sensory neurons confers dramatic effects on growth, metabolism, and reproduction in adult transgenic animals, phenocopying systemic responses to starvation. Furthermore, we show that constitutive expression of eIF2α carrying a phosphomimetic S49D mutation in the ASI neurons enhances dauer entry through bypassing the requirement for nutritionally deficient conditions. Our data suggest that the state of eIF2α phosphorylation in the ASI sensory neuron pair may modulate internal nutrient sensing and signaling pathways, with corresponding organismal effects on development and metabolism. Keywords: Caenorhabditis elegans; Dauer; EIF2α; phosphorylation; sensory neurons; translational contro
\u3cem\u3eDrosophila\u3c/em\u3e Vitelline Membrane Assembly: A Critical Role for an Evolutionarily Conserved Cysteine in the “VM domain” of sV23
The vitelline membrane (VM), the oocyte proximal layer of the Drosophila eggshell, contains four major proteins (VMPs) that possess a highly conserved “VM domain” which includes three precisely spaced, evolutionarily conserved, cysteines (CX7CX8C). Focusing on sV23, this study showed that the three cysteines are not functionally equivalent. While substitution mutations at the first (C123S) or third (C140S) cysteines were tolerated, females with a substitution at the second position (C131S) were sterile. Fractionation studies showed that sV23 incorporates into a large disulfide linked network well after its secretion ceases, suggesting that post-depositional mechanisms are in place to restrict disulfide bond formation until late oogenesis, when the oocyte no longer experiences large volume increases. Affinity chromatography utilizing histidine tagged sV23 alleles revealed small sV23 disulfide linked complexes during the early stages of eggshell formation that included other VMPs, namely sV17 and Vml. The early presence but late loss of these associations in an sV23 double cysteine mutant suggests that reorganization of disulfide bonds may underlie the regulated growth of disulfide linked networks in the vitelline membrane. Found within the context of a putative thioredoxin active site (CXXS) C131, the critical cysteine in sV23, may play an important enzymatic role in isomerizing intermolecular disulfide bonds during eggshell assembly
Data for 'Something in the way she moves': the functional significance of flexibility in the multiple roles of protein disulfide isomerase (PDI)
Protein disulfide isomerase (PDI) has diverse functions in the endoplasmic reticulum as catalyst of redox transfer, disulfide isomerization and oxidative protein folding, as molecular chaperone and in multi-subunit complexes. It interacts with an extraordinarily wide range of substrate and partner proteins, but there is only limited structural information on these interactions. Extensive evidence on the flexibility of PDI in solution is not matched by any detailed picture of the scope of its motion. A new rapid method for simulating the motion of large proteins provides detailed molecular trajectories for PDI demonstrating extensive changes in the relative orientation of its four domains, great variation in the distances between key sites and internal motion within the core ligand-binding domain. The review shows that these simulations are consistent with experimental evidence and provide insight into the functional capabilities conferred by the extensive flexible motion of PDI
- …
