979,236 research outputs found
The significance of velocity exponents in identifying erosion-corrosion mechanisms
The modes of erosion-corrosion are diverse and may vary from being ''erosion-dominated'', where erosion of metal is the dominant process, to ''corrosion-dominated'', where erosion of oxide scale is the dominant process. The intermediate situation in which erosion of transient oxide is the predominant process is termed ''erosion-corrosion-dominated'' and describes the regime in which continual formation and removal of oxide occurs down to the scale/metal interface, This paper considers some of the recent erosion-corrosion data and evaluates the velocity exponents. The critical factors which affect velocity exponents in these environments are identified, and some general principles and provisos are outlined when attempting to use such a technique to identify the mechanism of erosion-corrosion on the material surface. It is shown that the velocity exponents derived for ''erosion-dominated'' conditions are similar to those evaluated for ''ductile'' erosion processes. However, for ''corrosion-dominated'' conditions the exponents are significantly lower than those derived for ''brittle'' erosion processes at room temperature. For ''erosion-corrosion-dominated'' conditions the situation is more complex with velocity exponents being strongly dependent on temperature, alloy composition and relationship between velocity and particle flux. It is concluded that velocity exponents may be used only in very specific cases to identify erosion-corrosion mechanisms as the relationship between erosion-corrosion rate and velocity is complex and is a function of a wide range of parameters
Surface Erosion and Sedimentation Associated with Forest Land Use in Interior Alaska
Completion reportThe magnitude of sheet-rill erosion associated with various landscape
manipulations is presented. The Universal Soil Loss Equation's
usefulness for predicting annual sheet-rill erosion within interior
Alaska is confirmed. Investigations of sheet-rill erosion indicate that
removing the trees from forested areas with only minor ground cover
disturbance did not increase erosion. Removing the ground cover,
however, increased erosion 18 times above that on forested areas.
Erosion is substantially reduced when disturbed areas are covered with
straw mulch and fertilizer. Comparison of the actual erosion and the
quantity of erosion predicted with the Universal Soil Loss Equation
indicates that the equation overestimates annual erosion by an average
of 21 percent. It overestimates individual storm erosion by an average
of 174 percent. Data are also presented concerning sheet-rill erosion
in a permafrost trail, distribution of the rainfall erosion index, and
suggested cover and management factor values.This work was supported by the Institute of Northern Forestry,
Pacific Northwest Forest and Range Experiment Station, USDA. The
Institute of Water Resources, University of Alaska, provided facilities
for this research
Tolerable versus actual soil erosion rates in Europe
Erosion is a major threat to soil resources in Europe, and may impair their ability to deliver a range of ecosystem goods and services. This is reflected by the European Commission's Thematic Strategy for Soil Protection, which recommends an indicator-based approach for monitoring soil erosion. Defined baseline and threshold values are essential for the evaluation of soil monitoring data. Therefore, accurate spatial data on both soil loss and soil genesis are required, especially in the light of predicted changes in climate patterns, notably frequency, seasonal distribution and intensity of precipitation. Rates of soil loss are reported that have been measured, modelled or inferred for most types of soil erosion in a variety of landscapes, by studies across the spectrum of the Earth sciences. Natural rates of soil formation can be used as a basis for setting tolerable soil erosion rates, with soil formation consisting of mineral weathering as well as dust deposition. This paper reviews the concept of tolerable soil erosion and summarises current knowledge on rates of soil formation, which are then compared to rates of soil erosion by known erosion types, for assessment of soil erosion monitoring at the European scale
Evaluation of the volumetric erosion of spherical electrical contacts using the defect removal method
Volumetric erosion is regarded as a significant index for studying the erosion process of electrical switching contacts. Three-dimensional (3-D) surface measurement techniques provide an approach to investigate the geometric characteristics and volumetric erosion of electrical contacts. This paper presents a concrete data-processing procedure for evaluating volumetric erosion of spherical electrical contacts from 3-D surface measurement data using the defect removal method (DRM). The DRM outlined by McBride is an algorithm for evaluating the underlying form (prior to erosion) parameters of the surfaces with localized erosion and allowing the erosion characteristics themselves to be isolated. In this paper, a number of spherical electrical contacts that had undergone various electrical operations were measured using a 3-D surface profiler, the underlying form parameters of the eroded contacts were evaluated using the DRM, and then the volumetric erosions were isolated and calculated. The analysis of the correlations between the volumetric erosion and the number of switching cycles of electrical operation that the contacts had undergone showed a more accurate and reliable volumetric erosion evaluation using the DRM than that without using the DRM
A note on threshold velocity criteria for modelling the solid particle erosion of WC/Co MMCs
The threshold velocity for erosion of a ductile material is considered as the velocity required for initiation of plastic deformation in the substrate. For a brittle material, it defines the velocity required to nucleate a median crack in the elastic/plastic interface beneath the indentation. By invoking models for the solid particle erosion of ductile and brittle materials from the literature, together with a set of criteria based on threshold velocity calculations for erosion of the individual components, various predictions of erosion behaviour of WC/Co MMCs have been made. Qualitative agreement was found between the model predictions and various trends of the solid particle erosion behaviour of WC/Co cermets in the literature. The implications of the findings in addressing some of the puzzling trends of the solid particle erosion of MMCs in the literature, and how such insights may result in a reconsideration of some "classical" solid particle erosion relationships, are addressed in this paper
Mapping erosion-corrosion of carbon steel in oil exploration conditions : some new approaches to characterizing mechanisms and synergies
Erosion by solid particles in oil/water slurries is a technologically important area. In such conditions, it is necessary to distinguish between the effects of the sand, aqueous environment, and the oil. Erosion-corrosion maps provide a means of identification between erosion-corrosion regimes as a function of erosion and corrosion parameters. However, there has been no work carried out to map the effects of parameters in oil/water slurries. This paper investigates the effect of erosion-corrosion on carbon steel in oil field production and maps the results. Distinctions between "synergistic" and "additive" erosion-corrosion behaviour are superimposed on the maps in the various environments
Erosion of gadolinia doped EB-PVD TBCs
Gadolinia additions have been shown to significantly reduce the thermal
conductivity of EB-PVD TBCs. The aim of this paper is to further the
understanding on the effects of dopants on the erosion resistance of EB-PVD TBCs
by studying the effects of 2 mol% Gd2O3 additions on the room and high
temperature erosion resistance of as received and aged EB-PVD TBCs. Previously
it has been reported that gadolinia additions increased the erosion rate of EB-
PVD TBCs, this is indeed the case for room temperature erosion, however under
high temperature (825 à °C) erosion conditions this is not the case and the doped
TBCs have a slightly lower erosion rate than the standard YSZ EB-PVD TBCs. This
has been attributed to a change in the erosion mechanisms that operate at the
different temperatures. This change in mechanism was not expected under the
impact conditions used and has been attributed to a change in the column
diameter, and how this influences the dynamics of particle impactio
Erosion-corrosion maps for carbon steel in crude oil/water slurries : impact angle and applied potential effects
In studies of erosion-corrosion, there have been few investigations into the effect of tribological issues, such as particle impact and impact angle, on erosion-corrosion of materials in oil field production. Despite this fact, erosion-corrosion in such environments is a major issue. In such conditions, it is important to define regimes where the effect of lubricating oil may modify the erosion properties of the materials. In this study, the combined effects of erosion and corrosion were investigated in three environments, crude oil (high API gravity 52), reservoir water, and 20% reservoir water with crude oil at a range of applied potentials. Erosion-corrosion maps were constructed, based on the results, showing the change in mechanisms and wastage rates as a function of impact angle and applied potential. Regimes of erosion-corrosion were described on such maps using such an approach. From this work, it can be seen that the corrosion contribution was increased with an increase in the percentage of reservoir water. In the crude oil environment, it was shown that the erosion contribution (Ke) was generally higher than that for corrosion suggesting that corrosion was reduced in crude oil. The results are interpreted in terms of the effect of the crude oil environment in modifying the impact properties of the particles therefore providing surprising resistance to particle impacts in nominally aggressive corrosion environments
Mapping erosion-corrosion of carbon steel in oil-water solutions : Effect of velocity and applied potential
In this study, the combined effects of erosion and corrosion on carbon steel were investigated in three environments containing crude oil, reservoir water, and a mixture of both solutions at a range of applied potentials, velocities and impact angle. The results indicate that the corrosion contribution was augmented with an increase in the percentage of reservoir water. Both the erosion and corrosion contributions increased with impact velocity for all three environments. Following exposure of the carbon steel in the crude oil, the extent of the erosion was greater than that of corrosion, whilst in the reservoir water, the erosion and corrosion contributions were similar. Mechanisms of erosion-corrosion were proposed based on the change in erosion behaviour at various impact angles and applied potentials in the various environments. Erosion-corrosion maps were constructed based on the results, showing the change in mechanisms and wastage rates as a function of impact velocity and applied potential at various impact angles
Vertically inserted geotextile used for strengthening levees against internal erosion
The effectiveness of a vertical inserted geotextile against internal erosion, in particular backward erosion, has been investigated. Some small- and medium-scale tests were performed as well as a field-scale test and compared with test series without any erosion mitigating measure. All tests demonstrated that the geotextile shield was very effective to prevent backward erosion. Numerical analysis showed that it was more effective than an impermeable sheet pile of the same length. The paper describes the technique in more detail as well as the results of numerical calculations. Furthermore, the test facilities are describe
- …
