68 research outputs found

    Segatron: Segment-Aware Transformer for Language Modeling and Understanding

    Full text link
    Transformers are powerful for sequence modeling. Nearly all state-of-the-art language models and pre-trained language models are based on the Transformer architecture. However, it distinguishes sequential tokens only with the token position index. We hypothesize that better contextual representations can be generated from the Transformer with richer positional information. To verify this, we propose a segment-aware Transformer (Segatron), by replacing the original token position encoding with a combined position encoding of paragraph, sentence, and token. We first introduce the segment-aware mechanism to Transformer-XL, which is a popular Transformer-based language model with memory extension and relative position encoding. We find that our method can further improve the Transformer-XL base model and large model, achieving 17.1 perplexity on the WikiText-103 dataset. We further investigate the pre-training masked language modeling task with Segatron. Experimental results show that BERT pre-trained with Segatron (SegaBERT) can outperform BERT with vanilla Transformer on various NLP tasks, and outperforms RoBERTa on zero-shot sentence representation learning.Comment: Accepted by AAAI 202

    A Comparison of SVM against Pre-trained Language Models (PLMs) for Text Classification Tasks

    Full text link
    The emergence of pre-trained language models (PLMs) has shown great success in many Natural Language Processing (NLP) tasks including text classification. Due to the minimal to no feature engineering required when using these models, PLMs are becoming the de facto choice for any NLP task. However, for domain-specific corpora (e.g., financial, legal, and industrial), fine-tuning a pre-trained model for a specific task has shown to provide a performance improvement. In this paper, we compare the performance of four different PLMs on three public domain-free datasets and a real-world dataset containing domain-specific words, against a simple SVM linear classifier with TFIDF vectorized text. The experimental results on the four datasets show that using PLMs, even fine-tuned, do not provide significant gain over the linear SVM classifier. Hence, we recommend that for text classification tasks, traditional SVM along with careful feature engineering can pro-vide a cheaper and superior performance than PLMs
    • …
    corecore