3 research outputs found

    Observed methods of cuneiform tablet reconstruction in virtual and real world environments

    Get PDF
    The reconstruction of fragmented artefacts is a tedious process that consumes many valuable work hours of scholars' time. We believe that such work can be made more efficient via new techniques in interactive virtual environments. The purpose of this research is to explore approaches to the reconstruction of cuneiform tablets in the real and virtual environment, and to address the potential barriers to virtual reconstruction of fragments. In this paper we present the results of an experiment exploring the reconstruction strategies employed by individual users working with tablet fragments in real and virtual environments. Our findings have identified physical factors that users find important to the reconstruction process and further explored the subjective usefulness of stereoscopic 3D in the reconstruction process. Our results, presented as dynamic graphs of interaction, compare the precise order of movement and rotation interactions, and the frequency of interaction achieved by successful and unsuccessful participants with some surprising insights. We present evidence that certain interaction styles and behaviours characterise success in the reconstruction process

    Real-Time Control of a Video Game Using Eye Movements and Two Temporal EEG Sensors

    Get PDF
    EEG-controlled gaming applications range widely from strictly medical to completely nonmedical applications. Games can provide not only entertainment but also strong motivation for practicing, thereby achieving better control with rehabilitation system. In this paper we present real-time control of video game with eye movements for asynchronous and noninvasive communication system using two temporal EEG sensors. We used wavelets to detect the instance of eye movement and time-series characteristics to distinguish between six classes of eye movement. A control interface was developed to test the proposed algorithm in real-time experiments with opened and closed eyes. Using visual feedback, a mean classification accuracy of 77.3% was obtained for control with six commands. And a mean classification accuracy of 80.2% was obtained using auditory feedback for control with five commands. The algorithm was then applied for controlling direction and speed of character movement in two-dimensional video game. Results showed that the proposed algorithm had an efficient response speed and timing with a bit rate of 30 bits/min, demonstrating its efficacy and robustness in real-time control

    The reconstruction of virtual cuneiform fragments in an online environment

    Get PDF
    Reducing the time spent by experts on the process of cuneiform fragment reconstruction means that more time can be spent on the translation and interpretation of the information that the cuneiform fragments contain. Modern computers and ancillary technologies such as 3D printing have the power to simplify the process of cuneiform reconstruction, and open up the field of reconstruction to non-experts through the use of virtual fragments and new reconstruction methods. In order for computers to be effective in this context, it is important to understand the current state of available technology, and to understand the behaviours and strategies of individuals attempting to reconstruct cuneiform fragments. This thesis presents the results of experiments to determine the behaviours and actions of participants reconstructing cuneiform tablets in the real and virtual world, and then assesses tools developed specifically to facilitate the virtual reconstruction process. The thesis also explores the contemporary and historical state of relevant technologies. The results of experiments show several interesting behaviours and strategies that participants use when reconstructing cuneiform fragments. The experiments include an analysis of the ratio between rotation and movement that show a significant difference between the actions of successful and unsuccessful participants, and an unexpected behaviour that the majority of participants adopted to work with the largest fragments first. It was also observed that the areas of the virtual workspace used by successful participants was different from the areas used by unsuccessful participants. The work further contributes to the field of reconstruction through the development of appropriate tools that have been experimentally proved to dramatically increase the number of potential joins that an individual is able to make over period of time
    corecore