1,331 research outputs found

    Modulation of P-glycoprotein-mediated multidrug resistance in the CC531 rat colon tumor model

    Get PDF

    Modulation of P-glycoprotein-mediated multidrug resistance in the CC531 rat colon tumor model

    Get PDF

    In vitro and in vivo chemosensitizing effect of cyclosporin A on an intrinsic multidrug-resistant rat colon tumour

    Get PDF
    Colon tumours are intrinsically resistant to chemotherapy and most of them express the multidrug transporter P glycoprotein (Pgp). Whether this Pgp expression determines their resistance to anticancer agents in patients is not known. We report here on the reversibility of intrinsic multidrug resistance in a syngeneic, solid tumour model. CC531 is a rat colon carcinoma that expresses Pgp, as was shown with the monoclonal antibody C-219. In vitro the sensitivity to doxorubicin, daunorubicin and colchicine was enhanced by the addition of the chemosensitizers verapamil and cyclosporin A (CsA), while the sensitivity to cisplatin was not enhanced. In a daunorubicin accumulation assay verapamil and CsA enhanced the daunorbicin content of CC531 cells. In vivo CsA was injected intramuscularly for 3 consecutive days at a dose of 20 mg kg-1 day-1. This resulted in whole-blood CsA levels above 2 μmol/l, while intratumoral CsA levels amounted to 3.6 μmol/kg. In a subrenal capsule assay the maximal tolerable dose of doxorubicin (4 mg/kg) significantly reduced tumour growth. Doxorubicin at 3 mg/kg was not effective, but in combination with CsA this dose was as effective as 4 mg/kg doxorubicin. These experiments show that adequate doses of the chemosensitizing drug CsA can be obtained in vivo, resulting in increased antitumoral activity of doxorubicin in vivo. The in vitro and in vivo data together suggest that the chemosensitization by CsA is mediated by Pgp. This finding may have implications for the application of CsA and CsA-like chemosensitizers in the clinical setting

    ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal

    Get PDF
    One of the major problems related with anticancer chemotherapy is resistance against anticancer drugs. The ATP-binding cassette (ABC) transporters are a family of transporter proteins that are responsible for drug resistance and a low bioavailability of drugs by pumping a variety of drugs out cells at the expense of ATP hydrolysis. One strategy for reversal of the resistance of tumor cells expressing ABC transporters is combined use of anticancer drugs with chemosensitizers. In this review, the physiological functions and structures of ABC transporters, and the development of chemosensitizers are described focusing on well-known proteins including P-glycoprotein, multidrug resistance associated protein, and breast cancer resistance protein

    NSC23925, Identified in a High-Throughput Cell-Based Screen, Reverses Multidrug Resistance

    Get PDF
    Multidrug resistance (MDR) is a major factor which contributes to the failure of cancer chemotherapy, and numerous efforts have been attempted to overcome MDR. To date, none of these attempts have yielded a tolerable and effective therapy to reverse MDR; thus, identification of new agents would be useful both clinically and scientifically.To identify small molecule compounds that can reverse chemoresistance, we developed a 96-well plate high-throughput cell-based screening assay in a paclitaxel resistant ovarian cancer cell line. Coincubating cells with a sublethal concentration of paclitaxel in combination with each of 2,000 small molecule compounds from the National Cancer Institute Diversity Set Library, we identified a previously uncharacterized molecule, NSC23925, that inhibits Pgp1 and reverses MDR1 (Pgp1) but does not inhibit MRP or BCRP-mediated MDR. The cytotoxic activity of NSC23925 was further evaluated using a panel of cancer cell lines expressing Pgp1, MRP, and BCRP. We found that at a concentration of >10 microM NSC23925 moderately inhibits the proliferation of both sensitive and resistant cell lines with almost equal activity, but its inhibitory effect was not altered by co-incubation with the Pgp1 inhibitor, verapamil, suggesting that NSC23925 itself is not a substrate of Pgp1. Additionally, NSC23925 increases the intracellular accumulation of Pgp1 substrates: calcein AM, Rhodamine-123, paclitaxel, mitoxantrone, and doxorubicin. Interestingly, we further observed that, although NSC23925 directly inhibits the function of Pgp1 in a dose-dependent manner without altering the total expression level of Pgp1, NSC23925 actually stimulates ATPase activity of Pgp, a phenomenon seen in other Pgp inhibitors.The ability of NSC23925 to restore sensitivity to the cytotoxic effects of chemotherapy or to prevent resistance could significantly benefit cancer patients

    Cyclosporin A and verapamil have different effects on energy metabolism in multidrug-resistant tumour cells.

    Get PDF
    Cyclosporin A (Sandimmune) rapidly induced an increase in daunorubicin accumulation in multidrug-resistant human ovarian carcinoma cells (2780AD) and was more potent than verapamil. Steady-state 3H-cyclosporin A accumulation at 37 degrees C in 2780AD cells was 60-70% of that in the sensitive A2780 cells. A rapid increase of ATP consumption and lactate production was induced in 2780AD cells by verapamil, but not by cyclosporin A. These results suggest that the interactions of cyclosporin A and verapamil with P-glycoprotein, which leads to inhibition of drug transport, have a different mechanistic basis

    Early multidrug resistance, defined by changes in intracellular doxorubicin distribution, independent of P-glycoprotein.

    Get PDF
    Resistance to multiple antitumour drugs, mostly antibiotics or alkaloids, has been associated with a cellular plasma membrane P-glycoprotein (Pgp), causing energy-dependent transport of drugs out of cells. However, in many common chemotherapy resistant human cancers there is no overexpression of Pgp, which could explain drug resistance. In order to characterise early steps in multidrug resistance we have derived a series of P-glycoprotein-positive (Pgp/+) and P-glycoprotein-negative (Pgp/-) multidrug resistant cell lines, from a human non-small cell lung cancer cell line, SW-1573, by stepwise selection with increasing concentrations of doxorubicin. These cells were exposed to doxorubicin and its fluorescence in nucleus (N) and cytoplasm (C) was quantified with laserscan microscopy and image analysis. The fluorescence N/C ratio in parent cells was 3.8 and decreased both in Pgp/+ and Pgp/- cells with increasing selection pressure to 1.2-2.6 for cells with a resistance factor of 7-17. N/C ratios could be restored partly with verapamil only in Pgp/+ cells. N/C ratio measurements may define a general Pgp-independent type of defense of mammalian cells against certain anticancer agents which may precede Pgp expression in early doxorubicin resistance

    Potentiation of low-dose doxorubicin cytotoxicity by affecting p-glycoprotein through caryophyllane sesquiterpenes in hepg2 cells: an in vitro and in silico study

    Get PDF
    Doxorubicin represents a valuable choice for different cancers, although the severe side effects occurring at the high effective dose limits its clinical use. In the present study, potential strategies to potentiate low-dose doxorubicin efficacy, including a metronomic schedule, characterized by a short and repeated exposure to the anticancer drug, and the combination with the natural chemosensitizing sesquiterpenes β-caryophyllene and β-caryophyllene oxide, were assessed in human hepatoma HepG2 cells. The involvement of P-glycoprotein (P-gp) in the HepG2- chemosensitization to doxorubicin was evaluated. Also, the direct interaction of caryophyllene sesquiterpenes with P-gp was characterized by molecular docking and dynamic simulation studies. A metronomic schedule allowed us to enhance the low-dose doxorubicin cytotoxicity and the combination with caryophyllane sesquiterpenes further potentiated this effect. Also, an increased intracellular accumulation of doxorubicin and rhodamine 123 induced by caryophyllane sesquiterpenes was found, thus suggesting their interference with P-gp function. A lowered expression of P-gp induced by the combinations, with respect to doxorubicin alone, was observed too. Docking studies found that the binding site of caryophyllane sesquiterpene was next to the ATP binding domain of P-gp and that β-caryophyllene possessed the stronger binding affinity and higher inhibition potential calculated by MM-PBSA. Present findings strengthen our hypothesis about the potential chemosensitizing power of caryophyllane sesquiterpenes and suggest that combining a chemosensitizer and a metronomic schedule can represent a suitable strategy to overcome drawbacks of doxorubicin chemotherapy while exploiting its powerful activity

    Modulation of multidrug resistance with dexniguldipine hydrochloride (B8509-035) in the CC531 rot colon carcinoma model

    Get PDF
    The chemosensitizing potency of dexniguldipine hydrochloride (B8509-035) on epidoxorubicin was assessed in a multidrug-resistant (MDR) tumour model, the intrinsic MDR rat colon carcinoma CC531. In vitro in the sulphorhodamine B cell-viability assay the cytotoxicity of epidoxorubicin was increased approximately 15-fold by co-incubation with 50 ng/ml dexniguldipine. In vivo concentrations of dexniguldipine 5 h after a single oral dose of 30 mg/kg were 72 (± 19 SD) ng/ml in plasma and 925 (± 495 SD) ng/g in tumour tissue. Levels of the metabolite of dexniguldipine, M-1, which has the same chemosensitizing potential, were 26 (± 6 SD) ng/ml and 289 (± 127 SD) ng/g respectively. The efficacy of treatment with 6 mg/kg epidoxorubicin applied intravenously combined with 30 mg kg-1 day-1 dexniguldipine administered orally for 3 days prior to epidoxorubicin injection was evaluated on tumours grown under the renal capsule. Dexniguldipine alone did not show antitumour effects in vivo. Dexniguldipine modestly, but consistently, potentiated the tumour-growth-inhibiting effect of epidoxorubicin, reaching statistical significance in two out of four experiments. In conclusion, these experiments show that dexniguldipine has potency as an MDR reverter in vitro and in vivo in this solid MDR tumour model
    • …
    corecore