869 research outputs found

    4-Phenylbutyric acid treatment rescues trafficking and processing of a mutant surfactant protein C

    Get PDF
    Mutations in the SFTPC gene, encoding surfactant protein–C (SP-C), are associated with interstitial lung disease (ILD). Knowledge of the intracellular fate of mutant SP-C is essential in the design of therapies to correct trafficking/processing of the proprotein, and to prevent the formation of cytotoxic aggregates. We assessed the potential of a chemical chaperone to correct the trafficking and processing of three disease-associated mutant SP-C proteins. HEK293 cells were stably transfected with wild-type (SP-C(WT)) or mutant (SP-C(L188Q), SP-C(Δexon4), or SP-C(I73T)) SP-C, and cell lines with a similar expression of SP-C mRNA were identified. The effects of the chemical chaperone 4-phenylbutyric acid (PBA) and lysosomotropic drugs on intracellular trafficking to the endolysosomal pathway and the subsequent conversion of SP-C proprotein to mature peptide were assessed. Despite comparable SP-C mRNA expression, proprotein concentrations varied greatly: SP-C(I73T) was more abundant than SP-C(WT) and was localized to the cell surface, whereas SP-C(Δexon4) was barely detectable. In contrast, SP-C(L188Q) and SP-C(WT) proprotein concentrations were comparable, and a small amount of SP-C(L188Q) was localized to the endolysosomal pathway. PBA treatment restored the trafficking and processing of SP-C(L188Q) to SP-C(WT) concentrations, but did not correct the mistrafficking of SP-C(I73T) or rescue SP-C(Δexon4). PBA treatment also promoted the aggregation of SP-C proproteins, including SP-C(L188Q). This study provides proof of the principle that a chemical chaperone can correct the mistrafficking and processing of a disease-associated mutant SP-C proprotein

    Monitoring and investigating the process for cytosolic translocation after tau endocytosis

    Get PDF
    Tau pathology is well documented in Alzheimer's disease and its build up follows a stereotypical spread correlating with disease severity. This reveals an apparent anatomically linked spread of tau, supporting the hypothesis that tau can propagate via cell-to-cell transfer. However, a direct visualisation of tau entering the cytosol of a recipient cell and a full understanding of the mechanism at the basis of this process are still lacking. I have setup and optimised a strategy based on split-green fluorescent protein (GFP) to conclusively demonstrate cytosolic translocation of tau. Split-GFP is derived from the superfolder beta-barrel structure of GFPs truncated between 10th and 11th beta strands generating two non-fluorescent fragments named GFP1-10 and GFP11. In this project, the GFP11 is used to tag tau whereas the GFP1-10 is cytosolically expressed and acts as a sensor to detect the presence of tau in the cytoplasmic environment; only when the two GFP fragments associate will they reconstitute the fluorophore, thus maximising the signal to noise ratio. I have demonstrated the ability of the split-GFP assay to detect cellular uptake and release of tau into the cytosol in living cells. With this technique I have observed the real-time uptake dynamics of all six tau isoforms and the disease relevant P301S mutant and investigated potential mechanisms underpinning this process, including pH sensitivity and Rab GTPase activity. This assay has been tested both in cell-lines and primary neuronal cultures grown in custom-made microfluidic chambers, with the aim to improve the tools available to study tau propagation in vitro and in vivo

    The effect of quinoline anti-malarial drugs on the endolysosomal and secretory pathways of plasmodium falciparum strain 3D7, dictyostelium discoideum and mammalian A549 cells

    Get PDF
    Includes bibliographical references (leaves 92-109).The precise mechanisms of action of the quinoline anti-malarial drugs are uncertain, although they have been found to influence endocytosis, vesicular processing and secretion in malarial parasites and mammalian cells. In this study, the effects of chloroquine, amadiaquine, halofantrine, mefloquine and quinine on the endolysosomal systems in Plasmodium falciparum 3D7, Dictyostelium discoideum and A549 pulmonary cancer cells were examined

    Proteome wide association studies of LRRK2 variants identify novel causal and druggable proteins for Parkinson\u27s disease

    Get PDF
    Common and rare variants in the LRRK2 locus are associated with Parkinson\u27s disease (PD) risk, but the downstream effects of these variants on protein levels remain unknown. We performed comprehensive proteogenomic analyses using the largest aptamer-based CSF proteomics study to date (7006 aptamers (6138 unique proteins) in 3107 individuals). The dataset comprised six different and independent cohorts (five using the SomaScan7K (ADNI, DIAN, MAP, Barcelona-1 (Pau), and Fundació ACE (Ruiz)) and the PPMI cohort using the SomaScan5K panel). We identified eleven independent SNPs in the LRRK2 locus associated with the levels of 25 proteins as well as PD risk. Of these, only eleven proteins have been previously associated with PD risk (e.g., GRN or GPNMB). Proteome-wide association study (PWAS) analyses suggested that the levels of ten of those proteins were genetically correlated with PD risk, and seven were validated in the PPMI cohort. Mendelian randomization analyses identified GPNMB, LCT, and CD68 causal for PD and nominate one more (ITGB2). These 25 proteins were enriched for microglia-specific proteins and trafficking pathways (both lysosome and intracellular). This study not only demonstrates that protein phenome-wide association studies (PheWAS) and trans-protein quantitative trail loci (pQTL) analyses are powerful for identifying novel protein interactions in an unbiased manner, but also that LRRK2 is linked with the regulation of PD-associated proteins that are enriched in microglial cells and specific lysosomal pathways

    SARS-CoV-2 spike receptor-binding domain is internalized and promotes protein ISGylation in human induced pluripotent stem cell-derived cardiomyocytes

    Get PDF
    Although an increased risk of myocarditis has been observed after vaccination with mRNA encoding severe acute respiratory syndrome coronavirus 2 spike protein, its underlying mechanism has not been elucidated. This study investigated the direct effects of spike receptor-binding domain (S-RBD) on human cardiomyocytes differentiated from induced pluripotent stem cells (iPSC-CMs). Immunostaining experiments using ACE2 wild-type (WT) and knockout (KO) iPSC-CMs treated with purified S-RBD demonstrated that S-RBD was bound to ACE2 and internalized into the subcellular space in the iPSC-CMs, depending on ACE2. Immunostaining combined with live cell imaging using a recombinant S-RBD fused to the superfolder GFP (S-RBD-sfGFP) demonstrated that S-RBD was bound to the cell membrane, co-localized with RAB5A, and then delivered from the endosomes to the lysosomes in iPSC-CMs. Quantitative PCR array analysis followed by single cell RNA sequence analysis clarified that S-RBD-sfGFP treatment significantly upregulated the NF-kβ pathway-related gene (CXCL1) in the differentiated non-cardiomyocytes, while upregulated interferon (IFN)-responsive genes (IFI6, ISG15, and IFITM3) in the matured cardiomyocytes. S-RBD-sfGFP treatment promoted protein ISGylation, an ISG15-mediated post-translational modification in ACE2-WT-iPSC-CMs, which was suppressed in ACE2-KO-iPSC-CMs. Our experimental study demonstrates that S-RBD is internalized through the endolysosomal pathway, which upregulates IFN-responsive genes and promotes ISGylation in the iPSC-CMs.Okuno S., Higo S., Kondo T., et al. SARS-CoV-2 spike receptor-binding domain is internalized and promotes protein ISGylation in human induced pluripotent stem cell-derived cardiomyocytes. Scientific Reports 13, 21397 (2023); https://doi.org/10.1038/s41598-023-48084-7

    Following autophagy step by step

    Get PDF
    Autophagy is an evolutionarily conserved lysosomal degradation route for soluble components of the cytosol and organelles. There is great interest in identifying compounds that modulate autophagy because they may have applications in the treatment of major diseases including cancer and neurodegenerative disease. Hundeshagen and colleagues describe this month in BMC Biology a screening assay based on flow cytometry that makes it possible to track distinct steps in the autophagic process and thereby identify novel modulators of autophagy
    • …
    corecore