567,712 research outputs found

    An Empirical Ultraviolet Iron Spectrum Template Applicable to Active Galaxies

    Get PDF
    Iron emission is often a severe contaminant in optical-ultraviolet spectra of active galaxies. Its presence complicates emission line studies. A viable solution, already successfully applied at optical wavelengths, is to use an empirical iron emission template. We have generated FeII and FeIII templates for ultraviolet active galaxy spectra based on HST archival 1100 - 3100 A spectra of IZw1. Their application allows fitting and subtraction of the iron emission in active galaxy spectra. This work has shown that in particular CIII] lambda 1909 can be heavily contaminated by other line emission, including iron transitions. Details of the data processing, generation, and use of the templates, are given by Vestergaard & Wilkes (2001).Comment: 4 pages, including 1 figure, to appear in "Spectroscopic Challenges of Photoionized Plasmas", ASP Conf. Series, Eds. Gary Ferland and Daniel Wolf Savi

    Classification and analysis of emission-line galaxies using mean field independent component analysis

    Get PDF
    We present an analysis of the optical spectra of narrow emission-line galaxies, based on mean field independent component analysis (MFICA). Samples of galaxies were drawn from the Sloan Digital Sky Survey (SDSS) and used to generate compact sets of `continuum' and `emission-line' component spectra. These components can be linearly combined to reconstruct the observed spectra of a wider sample of galaxies. Only 10 components - five continuum and five emission line - are required to produce accurate reconstructions of essentially all narrow emission-line galaxies; the median absolute deviations of the reconstructed emission-line fluxes, given the signal-to-noise ratio (S/N) of the observed spectra, are 1.2-1.8 sigma for the strong lines. After applying the MFICA components to a large sample of SDSS galaxies we identify the regions of parameter space that correspond to pure star formation and pure active galactic nucleus (AGN) emission-line spectra, and produce high S/N reconstructions of these spectra. The physical properties of the pure star formation and pure AGN spectra are investigated by means of a series of photoionization models, exploiting the faint emission lines that can be measured in the reconstructions. We are able to recreate the emission line strengths of the most extreme AGN case by assuming the central engine illuminates a large number of individual clouds with radial distance and density distributions, f(r) ~ r^gamma and g(n) ~ n^beta, respectively. The best fit is obtained with gamma = -0.75 and beta = -1.4. From the reconstructed star formation spectra we are able to estimate the starburst ages. These preliminary investigations serve to demonstrate the success of the MFICA-based technique in identifying distinct emission sources, and its potential as a tool for the detailed analysis of the physical properties of galaxies in large-scale surveys.Comment: MNRAS accepted. 29 pages, 24 figures, 3 table

    Ion-by-Ion DEM Determination: I. Method

    Full text link
    We describe a technique to derive constraints on the differential emission measure (DEM) distribution, a measure of the temperature distribution, of collisionally ionized hot plasmas from their X-ray emission line spectra. This technique involves fitting spectra using a number of components, each of which is the entire X-ray line emission spectrum for a single ion. It is applicable to high-resolution X-ray spectra of any collisionally ionized plasma and particularly useful for spectra in which the emission lines are broadened and blended such as those of the winds of hot stars. This method does not require that any explicit assumptions about the form of the DEM distribution be made and is easily automated.Comment: This paper was split in two. This version is part I. Part II may be found at astro-ph/050343

    Nonlinear Compton scattering in ultra-short laser pulses

    Full text link
    A detailed analysis of the photon emission spectra of an electron scattered by a laser pulse containing only very few cycles of the carrying electromagnetic field is presented. The analysis is performed in the framework of strong-field quantum electrodynamics, with the laser field taken into account exactly in the calculations. We consider different emission regimes depending on the laser intensity, placing special emphasis on the regime of one-cycle beams and of high laser intensities, where the emission spectra depend nonperturbatively on the laser intensity. In this regime we in particular present an accurate stationary phase analysis of the integrals that are shown to determine the computed emission spectra. The emission spectra show significant differences with respect to those in a long pulsed or monochromatic laser field: the emission lines obtained here are much broader and, more important, no dressing of the electron mass is observed.Comment: 31 pages, 15 figure

    The sharpness of gamma-ray burst prompt emission spectra

    Get PDF
    We aim to obtain a measure of the curvature of time-resolved spectra that can be compared directly to theory. This tests the ability of models such as synchrotron emission to explain the peaks or breaks of GBM prompt emission spectra. We take the burst sample from the official Fermi GBM GRB time-resolved spectral catalog. We re-fit all spectra with a measured peak or break energy in the catalog best-fit models in various energy ranges, which cover the curvature around the spectral peak or break, resulting in a total of 1,113 spectra being analysed. We compute the sharpness angles under the peak or break of the triangle constructed under the model fit curves and compare to the values obtained from various representative emission models: blackbody, single-electron synchrotron, synchrotron emission from a Maxwellian or power-law electron distribution. We find that 35% of the time-resolved spectra are inconsistent with the single-electron synchrotron function, and 91% are inconsistent with the Maxwellian synchrotron function. The single temperature, single emission time and location blackbody function is found to be sharper than all the spectra. No general evolutionary trend of the sharpness angle is observed, neither per burst nor for the whole population. It is found that the limiting case, a single temperature Maxwellian synchrotron function, can only contribute up to 5818+2358^{+23}_{-18}% of the peak flux. Our results show that even the sharpest but non-realistic case, the single-electron synchrotron function, cannot explain a large fraction of the observed GRB prompt spectra. Because of the fact that any combination of physically possible synchrotron spectra added together will always further broaden the spectrum, emission mechanisms other than optically thin synchrotron radiation are likely required in a full explanation of the spectral peaks or breaks of the GRB prompt emission phase.Comment: 16 pages, 13 figures, 2 tables, accepted for publication in A&

    Quantitative analysis of directional spontaneous emission spectra from light sources in photonic crystals

    Get PDF
    We have performed angle-resolved measurements of spontaneous-emission spectra from laser dyes and quantum dots in opal and inverse opal photonic crystals. Pronounced directional dependencies of the emission spectra are observed: angular ranges of strongly reduced emission adjoin with angular ranges of enhanced emission. It appears that emission from embedded light sources is affected both by the periodicity and by the structural imperfections of the crystals: the photons are Bragg diffracted by lattice planes and scattered by unavoidable structural disorder. Using a model comprising diffuse light transport and photonic band structure, we quantitatively explain the directional emission spectra. This provides detailed understanding of the transport of spontaneously emitted light in real photonic crystals, which is essential in the interpretation of quantum-optics in photonic band-gap crystals and for applications wherein directional emission and total emission power are controlled.Comment: 10 pages, 10 figures, corrected pdf, inserted new referenc

    Thermal-infrared spectral observations of geologic materials in emission

    Get PDF
    The thermal-infrared spectra of geologic materials in emission were studied using the prototype Thermal Emission Spectrometer (TES). A variety of of processes and surface modifications that may influence or alter the spectra of primary rock materials were studied. It was confirmed that thermal emission spectra contain the same absorption features as those observed in transmission and reflection spectra. It was confirmed that the TES instrument can be used to obtain relevant spectra for analysis of rock and mineral composition

    A CRIRES-search for H3+ emission from the hot Jupiter atmosphere of HD 209458 b

    Full text link
    Close-in extrasolar giant planets are expected to cool their thermospheres by producing H3+ emission in the near-infrared (NIR), but simulations predict H3+ emission intensities that differ in the resulting intensity by several orders of magnitude. We want to test the observability of H3+ emission with CRIRES at the Very Large Telescope (VLT), providing adequate spectral resolution for planetary atmospheric lines in NIR spectra. We search for signatures of planetary H3+ emission in the L` band, using spectra of HD 209458 obtained during and after secondary eclipse of its transiting planet HD 209458 b. We searched for H3+ emission signatures in spectra containing the combined light of the star and, possibly, the planet. With the information on the ephemeris of the transiting planet, we derive the radial velocities at the time of observation and search for the emission at the expected line positions and search for planetary signals and use a shift and add technique combining all observed spectra taken after sec. eclipse to calculate an upper emission limit. We do not find signatures of atmospheric H3+ emission in the spectra containing the combined light of HD 209458 and planet b. We calculate the emission limit for the H3+ line at 3953.0 nm (Q(1, 0)) to be 8.32 E18W and a limit of 5.34E18 W for the line at 3985.5 nm (Q(3, 0)). Comparing our emission limits to the theoretical predictions suggests that we lack 1 to 3 magnitudes of sensitivity to measure H3+ emission in our target object. We show that under more favorable weather conditions the data quality can be improved significantly, reaching 5 E16W for star-planet systems that are close to Earth. We estimate that pushing the detection limit down to 1E15W will be possible with ground-based observations with future instrumentation, for example, the E-ELT.Comment: 7 pages, Astronomy & Astrophysics accepte

    ORFEUS II and IUE Spectroscopy of EX Hydrae

    Get PDF
    Using ORFEUS-SPAS II FUV spectra, IUE UV spectra, and archival EUVE deep survey photometry, we present a detailed picture of the behavior of the magnetic cataclysmic variable EX Hydrae. Like HUT spectra of this source, the FUV and UV spectra reveal broad emission lines of He II, C II-IV, N III and V, O VI, Si III-IV, and Al III superposed on a continuum which is blue in the UV and nearly flat in the FUV. Like ORFEUS spectra of AM Her, the O VI doublet is resolved into broad and narrow emission components. Consistent with its behavior in the optical, the FUV and UV continuum flux densities, the FUV and UV broad emission line fluxes, and the radial velocity of the O VI broad emission component all vary on the spin phase of the white dwarf, with the maximum of the FUV and UV continuum and broad emission line flux light curves coincident with maximum blueshift of the broad O VI emission component. On the binary phase, the broad dip in the EUV light curve is accompanied by strong eclipses of the UV emission lines and by variations in both the flux and radial velocity of the O VI narrow emission component. The available data are consistent with the accretion funnel being the source of the FUV and UV continuum and the O VI broad emission component, and the white dwarf being the source of the O VI narrow emission component.Comment: 21 pages, 10 Postscript figures; LaTeX format, uses aaspp4.sty; table2.tex included separately because it must be printed sideways - see instructions in the file; accepted on 1999 Feb 20 for publication in The Astrophysical Journa
    corecore