6 research outputs found

    EMD-based video clip retrieval by many-to-many matching

    No full text
    This paper presents a new approach for video clip retrieval based on Earth Mover's Distance (EMD). Instead of imposing one-to-one matching constraint as in [11, 14], our approach allows many-to-many matching methodology and is capable of tolerating errors due to video partitioning and various video editing effects. We formulate clip-based retrieval as a graph matching problem in two stages. In the first stage, to allow the matching between a query and a long video, an online clip segmentation algorithm is employed to rapidly locate candidate clips for similarity measure. In the second stage, a weighted graph is constructed to model the similarity between two clips. EMD is proposed to compute the minimum cost of the weighted graph as the similarity between two clips. Experimental results show that the proposed approach is better than some existing methods in term of ranking capability.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000231148700011&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Computer Science, Theory & MethodsImaging Science & Photographic TechnologySCI(E)CPCI-S(ISTP)

    Human-machine cooperation in large-scale multimedia retrieval : a survey

    Get PDF
    Large-Scale Multimedia Retrieval(LSMR) is the task to fast analyze a large amount of multimedia data like images or videos and accurately find the ones relevant to a certain semantic meaning. Although LSMR has been investigated for more than two decades in the fields of multimedia processing and computer vision, a more interdisciplinary approach is necessary to develop an LSMR system that is really meaningful for humans. To this end, this paper aims to stimulate attention to the LSMR problem from diverse research fields. By explaining basic terminologies in LSMR, we first survey several representative methods in chronological order. This reveals that due to prioritizing the generality and scalability for large-scale data, recent methods interpret semantic meanings with a completely different mechanism from humans, though such humanlike mechanisms were used in classical heuristic-based methods. Based on this, we discuss human-machine cooperation, which incorporates knowledge about human interpretation into LSMR without sacrificing the generality and scalability. In particular, we present three approaches to human-machine cooperation (cognitive, ontological, and adaptive), which are attributed to cognitive science, ontology engineering, and metacognition, respectively. We hope that this paper will create a bridge to enable researchers in different fields to communicate about the LSMR problem and lead to a ground-breaking next generation of LSMR systems

    Human-Machine Cooperation in Large-Scale Multimedia Retrieval: A Survey

    Get PDF
    Large-Scale Multimedia Retrieval(LSMR) is the task to fast analyze a large amount of multimedia data like images or videos and accurately find the ones relevant to a certain semantic meaning. Although LSMR has been investigated for more than two decades in the fields of multimedia processing and computer vision, a more interdisciplinary approach is necessary to develop an LSMR system that is really meaningful for humans. To this end, this paper aims to stimulate attention to the LSMR problem from diverse research fields. By explaining basic terminologies in LSMR, we first survey several representative methods in chronological order. This reveals that due to prioritizing the generality and scalability for large-scale data, recent methods interpret semantic meanings with a completely different mechanism from humans, though such humanlike mechanisms were used in classical heuristic-based methods. Based on this, we discuss human-machine cooperation, which incorporates knowledge about human interpretation into LSMR without sacrificing the generality and scalability. In particular, we present three approaches to human-machine cooperation (cognitive, ontological, and adaptive), which are attributed to cognitive science, ontology engineering, and metacognition, respectively. We hope that this paper will create a bridge to enable researchers in different fields to communicate about the LSMR problem and lead to a ground-breaking next generation of LSMR systems
    corecore