1,026 research outputs found

    EM based channel estimation in an amplify-and-forward relaying network

    Get PDF
    Cooperative communication offers a way to obtain spatial diversity in a wireless network without increasing hardware demands. The different cooperation protocols proposed in the literature [1] are often studied under the assumption that all channel state information is available at the destination. In a practical scenario, channel estimates need to be derived from the broadcasted signals. In this paper, we study the Amplify-and-Forward protocol and use the expectation-maximization (EM) algorithm to obtain the channel estimates in an iterative way. Our results show that the performance of the system that knows the channels can be approached at the cost of an increased computational complexity. In case a small constellation is used, a low complexity approximation is proposed with a similar performance

    EM based channel estimation in an amplify-and-forward relaying network

    Get PDF
    Cooperative communication offers a way to obtain spatial diversity in a wireless network without increasing hardware demands. The different cooperation protocols proposed in the literature [1] are often studied under the assumption that all channel state information is available at the destination. In a practical scenario, channel estimates need to be derived from the broadcasted signals. In this paper, we study the Amplify-and-Forward protocol and use the expectation-maximization (EM) algorithm to obtain the channel estimates in an iterative way. Our results show that the performance of the system that knows the channels can be approached at the cost of an increased computational complexity. In case a small constellation is used, a low complexity approximation is proposed with a similar performance

    Quantize and forward cooperative communication: joint channel and frequency offset estimation

    Get PDF

    On Capacity of Active Relaying in Magnetic Induction based Wireless Underground Sensor Networks

    Full text link
    Wireless underground sensor networks (WUSNs) present a variety of new research challenges. Magnetic induction (MI) based transmission has been proposed to overcome the very harsh propagation conditions in underground communications in recent years. In this approach, induction coils are utilized as antennas in the sensor nodes. This solution achieves longer transmission ranges compared to the traditional electromagnetic (EM) waves based approach. Furthermore, a passive relaying technique has been proposed in the literature where additional resonant circuits are deployed between the nodes. However, this solution is shown to provide only a limited performance improvement under practical system design contraints. In this work, the potential of an active relay device is investigated which may improve the performance of the system by combining the benefits of the traditional wireless relaying and the MI based signal transmission.Comment: This paper has been accepted for presentation at IEEE ICC 2015. It has 6 pages, 5 figures (4 colored), and 17 reference

    Dispensing with channel estimation: differentially modulated cooperative wireless communications

    No full text
    As a benefit of bypassing the potentially excessive complexity and yet inaccurate channel estimation, differentially encoded modulation in conjunction with low-complexity noncoherent detection constitutes a viable candidate for user-cooperative systems, where estimating all the links by the relays is unrealistic. In order to stimulate further research on differentially modulated cooperative systems, a number of fundamental challenges encountered in their practical implementations are addressed, including the time-variant-channel-induced performance erosion, flexible cooperative protocol designs, resource allocation as well as its high-spectral-efficiency transceiver design. Our investigations demonstrate the quantitative benefits of cooperative wireless networks both from a pure capacity perspective as well as from a practical system design perspective

    Bayesian Channel Estimation Techniques for AF MIMO Relaying Systems

    Get PDF
    In this paper, we consider the fundamental problem of channel estimation in multiple-input multiple-output (MIMO) amplify-and-forward (AF) relaying systems operating over random channels. Using the Bayesian framework, linear minimum mean square error (LMMSE) and expectation-maximization (EM) based maximum a posteriori (MAP) channel estimation algorithms are developed, that provide the destination with full knowledge of all channel parameters involved in the transmission. The performance of the proposed algorithms is evaluated in terms of the mean square error (MSE) as a function of the signal-to-noise ratio (SNR) during the training interval. Our simulation results show that the incorporation of prior knowledge into the channel estimation algorithm offers improved performance, especially in the low SNR regime
    corecore