1,175,708 research outputs found

    Electronic correlation in the quantum Hall regime

    Get PDF
    Two-dimensional interacting electron systems become strongly correlated if the electrons are subject to a perpendicular high magnetic field. After introducing the physics of the quantum Hall regime the incompressible many- particle ground state and its excitations are studied in detail at fractional filling factors for spin-polarized electrons. The spin degree of freedom whose importance was shown in recent experiments is considered by studying the thermodynamics at filling factor one and near one.Comment: 55 pages, 26 eps-figure

    Born-Oppenheimer Dynamics, Electronic Friction, and the Inclusion of Electron-Electron Interactions

    Full text link
    We present a universal expression for the electronic friction as felt by a set of classical nuclear degrees of freedom (DoF's) coupled to a manifold of quantum electronic DoF's; no assumptions are made regarding the nature of the electronic Hamiltonian and electron-electron repulsions are allowed. Our derivation is based on a quantum-classical Liouville equation (QCLE) for the coupled electronic-nuclear motion, followed by an adiabatic approximation whereby electronic transitions are assumed to equilibrate faster than nuclear movement. The resulting form of friction is completely general, but does reduce to previously published expressions for the quadratic Hamiltonian (i.e. Hamiltonians without electronic correlation). At equilibrium, the second fluctuation-dissipation theorem is satisfied and the frictional matrix is symmetric. To demonstrate the importance of electron-electron correlation, we study electronic friction within the Anderson-Holstein model, where a proper treatment of electron-electron interactions shows signatures of a Kondo resonance and a mean-field treatment is completely inadequate

    Exchange-correlation potentials for inhomogeneous electron systems in two dimensions from exact diagonalization: comparison with the local-spin-density approximation

    Full text link
    We consider electronic exchange and correlation effects in density-functional calculations of two-dimensional systems. Starting from wave function calculations of total energies and electron densities of inhomogeneous model systems, we derive corresponding exchange-correlation potentials and energies. We compare these with predictions of the local-spin-density approximation and discuss its accuracy. Our data will be useful as reference data in testing, comparing and parametrizing exchange and correlation functionals for two-dimensional electronic systems.Comment: Submitted to Physical Review B on January 3, 2012. Second revised version submitted on April 13, 201

    Correlation Measurement of Squeezed Light

    Get PDF
    We study the implementation of a correlation measurement technique for the characterization of squeezed light which is nearly free of electronic noise. With two different sources of squeezed light, we show that the sign of the covariance coefficient, revealed from the time resolved correlation data, is witnessing the presence of squeezing in the system. Furthermore, we estimate the degree of squeezing using the correlation method and compare it to the standard homodyne measurement scheme. We show that the role of electronic detector noise is minimized using the correlation approach as opposed to homodyning where it often becomes a crucial issue

    Electronic correlation effects in the Cr2GeC Mn+1AXn phase

    Full text link
    The magnetic properties, electronic band structure and Fermi surfaces of the hexagonal Cr2GeC system have been studied by means of both generalized gradient approximation (GGA) and the +U corrected method (GGA+U). The effective U value has been computed within the augmented plane-wave theoretical scheme by following the constrained density functional theory formalism of Anisimov et al. [1991 Phys. Rev. B 45, 7570]. On the basis of our GGA+U calculations, a compensated anti-ferromagnetic spin ordering of Cr atoms has been found to be the ground state solution for this material, where a Ge-mediated super-exchange coupling is responsible for an opposite spin distribution between the ABA stacked in-plane Cr-C networks. Structural properties have also been tested and found to be in good agreement with the available experimental data. Topological analysis of Fermi surfaces have been used to qualitatively address the electronic transport properties of Cr2GeC and found an important asymmetrical carrier-type distribution within the hexagonal crystal lattice. We conclude that an appropriate description of the strongly correlated Cr-d electrons is an essential issue for interpreting the material properties of this unusual Cr-based MAX-phase.Comment: 13 pages, 10 picture

    Electronic stress tensor analysis of molecules in gas phase of CVD process for GeSbTe alloy

    Get PDF
    We analyze the electronic structure of molecules which may exist in gas phase of chemical vapor deposition process for GeSbTe alloy using the electronic stress tensor, with special focus on the chemical bonds between Ge, Sb and Te atoms. We find that, from the viewpoint of the electronic stress tensor, they have intermediate properties between alkali metals and hydrocarbon molecules. We also study the correlation between the bond order which is defined based on the electronic stress tensor, and energy-related quantities. We find that the correlation with the bond dissociation energy is not so strong while one with the force constant is very strong. We interpret these results in terms of the energy density on the "Lagrange surface", which is considered to define the boundary surface of atoms in a molecule in the framework of the electronic stress tensor analysis.Comment: 32 pages, 9 figure
    corecore