231,631 research outputs found
Molecular Dynamics simulations of concentrated aqueous electrolyte solutions
Transport properties of concentrated electrolytes have been analyzed using
classical molecular dynamics simulations with the algorithms and parameters
typical of simulations describing complex electrokinetic phenomena. The
electrical conductivity and transport numbers of electrolytes containing
monovalent (KCl), divalent (MgCl), a mixture of both (KCl + MgCl), and
trivalent (LaCl) cations have been obtained from simulations of the
electrolytes in electric fields of different magnitude. The results obtained
for different simulation parameters have been discussed and compared with
experimental measurements of our own and from the literature. The
electroosmotic flow of water molecules induced by the ionic current in the
different cases has been calculated and interpreted with the help of the
hydration properties extracted from the simulations
A unified model for temperature dependent electrical conduction in polymer electrolytes
The observed temperature dependence of electrical conduction in polymer
electrolytes is usually fitted with two separated equations: an Arrhenius
equation at low temperatures and Vogel-Tamman-Fulcher (VTF) at high
temperatures. We report here a derivation of a single equation to explain the
variation of electrical conduction in polymer electrolytes at all temperature
ranges. Our single equation is in agreement with the experimental dataComment: 13 pages, 2 figure
Work Sanctions Under Welfare Reform: Are They Helping Women Achieve Self-Sufficiency?
The focus of this thesis has been to determine the usable voltage range of carbon-based supercapacitors (SC). Supercapacitors are a relatively new type of capacitors with a vast increase in capacitance compared to capacitors which utilize a dielectric as charge separator. A SC consists of two electrodes and an electrolyte separating the electrodes. The charges are stored by electrostatic forces in the interface between the electrode and the electrolyte, forming the so called electrochemical double-layer (EDL). With porous electrodes the effective surface area of the interfacial zone can be made very large, giving SCs a large storage capacity. The limiting factors of a SC is the decomposition potential of the electrolyte and the decomposition of the electrodes. For commercially manufactured SCs the electrolyte is usually an organic solvent, which has a decomposition potential of up to 2.7-2.8 V. Compared to aqueous electrolytes with a thermodynamic limit of 1.23 V. The drawback of using non-aqueous electrolytes is that they are not environmentally friendly, and they increase the production cost. It is claimed that the voltage range can be up to 1.9 V using aqueous electrolytes. Some researchers have focused on aqueous electrolytes for these reasons. In this thesis two different electrolytes were tested to determine if the voltage range could be extended. The experiments were conducted using a three electrode cell and performing cyclic voltammogram measurements (CV). The carbon electrodes were made of two different sources of grahite, battery graphite or exfoliated graphite, and nano fibrilated cellulose was added to increase the mechanical stability. The results show that the oxidation potential of the carbon electrode was the positive limit. A usable potential of about 1 V was shown. However, when cycling the electrodes to potentials below the decomposition limit, for hydrogen evolution, interesting effects were seen. A decrease in reaction kinetics, indicating a type of conditioning of the electrode was observed. An increase in charge storage capacitance was also observed when comparing the initial measurements with the final, probably corresponding to an increase in porosity.KEPS projekt Sundsvall Mitt Universite
The Effects of Cationic Valence on Wash Deinking of Newsprint
The effects of cationic valence were tested against final pulp brightness in the wash deinking process on newsprint. The electrolytes used were AlCl3,CaCl2 and NaCl. The concentrations were varied from 8.32 x 10-4 M to 100 times that amount on all three electrolytes. The effects were studied on the wash water and the cooking liquor seperately, using deionized water as a control run. It was found that there was a noticeable loss of brightness even at the lowest level of electrolyte addition in both the wash water trials and the cooking liquor trials. The effect was greatest when the electrolytes were added to the cooking liquor for AlCl3 and CaCl2. It was also noticed that the addition of Al and Ca ions to cooks containing sodium silicate as a dispersing agent caused a precipate to form, possibly lowering the effectiveness of the dispersing agent
Nitrile-assistant eutectic electrolytes for cryogenic operation of lithium ion batteries at fast charges and discharges
The charge/discharge characteristics of lithium ion batteries at low temperature (LT = -20 ??C) are enhanced by using ethylene carbonate (EC)-based electrolytes with the help of assistant solvents of nitriles. Conventional liquid electrolytes (e.g. a mixture of EC and dimethyl carbonate (DMC), abbreviated as LED) cannot support a satisfactory capacity at low temperature as well as at high rates even if electric vehicles require low-temperature operation. Introducing propionitrile or butyronitrile (Pn or Bn) into LED (resulting in LEDPn or LEDBn) as a co-solvent increases significantly the high-rate capacities at -20??C. For example, LEDPn delivers 62% of the available capacity at 1 C and 46% at 3 C with a 2.7 V cut-off while the control LED provides just 6% and 4% at the same rates. Successful operation at -20??C with nitrile-assistant electrolytes results from high ionic conductivity, low viscosity and freezing point depression caused by the eutectic behavior of the carbonates (EC/DMC) and Pn. Based on the phase diagram of Pn with EC/DMC, we expect a meaningful battery operation up to -110??C, probably lower, at the eutectic composition.close0
Anisotropic Lattice Models of Electrolytes
Systems of charged particles on anisotropic three-dimensional lattices are
investigated theoretically using Debye-Huckel theory. It is found that the
thermodynamics of these systems strongly depends on the degree of anisotropy.
For weakly anisotropic simple cubic lattices, the results indicate the
existence of order-disorder phase transitions and a tricritical point, while
the possibility of low-density gas-liquid coexistence is suppressed. For
strongly anisotropic lattices this picture changes dramatically: the
low-density gas-liquid phase separation reappears and the phase diagram
exhibits critical, tricritical and triple points. For body-centered lattices,
the low-density gas-liquid phase coexistence is suppressed for all degrees of
anisotropy. These results show that the effect of anisotropy in lattice models
of electrolytes amounts to reduction of spatial dimensionality.Comment: RevTeX 4; 14 pages+5 pictures; Submitted to JC
????????? ??????-?????? ???????????? ?????? ?????? ????????? ?????????
Department of Energy Engineering (Battery Science and Technology)Aprotic electrolyte based lithium-oxygen batteries are of considerable interest due to its ultrahigh theoretical specific energy density (1675 mAh per gram of oxygen) against the present lithium-ion battery. In spite of the attractiveness of its high theoretical capacity, there is a number of drawbacks such as instability of electrochemical reaction of electrode and electrolytes. In order to overcome these parasitic reactions, significant efforts have been devoted to developing the key materials such as carbon-free air cathodes and high concentrated electrolytes. However, the CO2 evolution during the charging process and low ionic conductivity limit the ideal electrochemical reaction in aprotic electrolytes.
In this thesis, we applied the molten electrolyte based on nitrate-based electrolyte (Li/Na/K/Cs/Ca-NO3). The molten electrolyte, which has a eutectic point of 65???, has the advantages of high stability and high-temperature operation, thereby preventing detrimental solvent byproducts in lithium-oxygen batteries. We examined the Oxygen Evolution Reaction (OER) and Oxygen Reduction Reaction (ORR) on operating temperature using in situ pressure drop and gas analyses, Differential Electrochemical Mass Spectrometry (DEMS). Our results demonstrated that the Li2O2, a discharge product, formed a stable hexagonal morphology in the lithium-oxygen battery upon discharge process by scanning electron microscopy and X-ray diffraction techniques. Also, it leads to improved oxygen mobility at high temperature since a molten salt was used as the electrolyte in lithium-oxygen batteries. In addition, we found that kinetics are improved with increasing operating temperature in molten salt electrolyte cells.ope
Measurement of Three Transport Coefficients and the Thermodynamic Factor in Block Copolymer Electrolytes with Different Morphologies.
The design and engineering of composite materials is one strategy to satisfy the materials needs of systems with multiple orthogonal property requirements. In the case of rechargeable batteries with lithium metal anodes, the system requires a separator with fast lithium ion transport and good mechanical strength. In this work, we focus on the system polystyrene-block-poly(ethylene oxide) (SEO) with bis(trifluoromethane)sulfonimide lithium salt (LiTFSI). Ion transport occurs in the salt-containing poly(ethylene oxide)-rich domains. Mechanical rigidity arises due to the glassy nature of polystyrene (PS). If we assume that the salt does not interact with the PS-rich domains, we can describe ion transport in the electrolyte by three transport parameters (ionic conductivity, κ, salt diffusion coefficient, D, and cation transference number, t+0) and a thermodynamic factor, Tf. By systematically varying the volume fraction of the conducting phase, ϕc between 0.29 and 1.0, and chain length, N between 80 and 8000, we elucidate the role of morphology on ion transport. We find that κ is the strongest function of morphology, varying by three full orders of magnitude, while D is a weaker function of morphology. To calculate t+0 and Tf, we measure the current fraction, ρ+, and the open circuit potential, U, of concentration cells. We find that ρ+ and U follow universal trends as a function of salt concentration, regardless of chain length, morphology, or ϕc, allowing us to calculate t+0 for any SEO/LiTFSI or PEO/LiTFSI mixture when κ and D are known. The framework developed in this paper enables predicting the performance of any block copolymer electrolyte in a rechargeable battery
- …
