34,035 research outputs found

    Floquet metal to insulator phase transitions in semiconductor nanowires

    Full text link
    We study steady-states of semiconductor nanowires subjected to strong resonant time-periodic drives. The steady-states arise from the balance between electron-phonon scattering, electron-hole recombination via photo-emission, and Auger scattering processes. We show that tuning the strength of the driving field drives a transition between an electron-hole metal (EHM) phase and a Floquet insulator (FI) phase. We study the critical point controlling this transition. The EHM-to-FI transition can be observed by monitoring the presence of peaks in the density-density response function which are associated with the Fermi momentum of the EHM phase, and are absent in the FI phase. Our results may help guide future studies towards inducing novel non-equilibrium phases of matter by periodic driving.Comment: 10 pages including appendice

    Eigenstrain-based reduced order homogenization models for polycrystal plasticity: addressing scalability

    Get PDF
    In this manuscript, accelerated, sparse and scalable eigenstrain-based reduced order homogenization models have been developed for computationally efficient multiscale analysis of polycrystalline materials. The proposed model is based on the eigenstrain based reduced order homogenization (EHM) approach, which takes the concept of transformation field theory that pre-computes certain microscale information and considers piece-wise constant inelastic response within partitions (e.g., grains) of the microstructure for model order reduction.The acceleration is achieved by introducing sparsity into the linearized reduced order system through selectively considering the interactions between grains based on the idea of grain clustering. The proposed approach results in a hierarchy of reduced models that recovers original EHM, when full range of interactions are considered, and degrades to the Taylor model, when all grain interactions are neglected. The resulting sparse system is solved efficiently using both direct and iterative sparse solvers, both of which show significant efficiency improvements compared to the full EHM. A layer-by-layer neighbor grain clustering scheme is proposed and implemented to define ranges of grain interactions. Performance of the proposed approach is evaluated by comparison with the original full EHM and crystal plasticity finite element (CPFE) simulations

    A New Solution to the Plasma Starved Event Horizon Magnetosphere: Application to the Forked Jet in M87

    Get PDF
    © 2018 ESO. Reproduced with permission from Astronomy & Astrophysics. Content in the UH Research Archive is made available for personal research, educational, and non-commercial purposes only. Unless otherwise stated, all content is protected by copyright, and in the absence of an open license, permissions for further re-use should be sought from the publisher, the author, or other copyright holder.Very Long Baseline Interferometry observations at 86 GHz reveal an almost hollow jet in M87 with a forked morphology. The detailed analysis presented here indicates that the spectral luminosity of the central spine of the jet in M87 is a few percent of that of the surrounding hollow jet 200-400 μ as from the central black hole. Furthermore, recent jet models indicate that a hollow "tubular" jet can explain a wide range of plausible broadband spectra originating from jetted plasma located within ~30 μ as of the central black hole, including the 230 GHz correlated flux detected by the Event Horizon Telescope. Most importantly, these hollow jets from the inner accretion flow have an intrinsic power capable of energizing the global jet out to kiloparsec scales. Thus motivated, this paper considers new models of the event horizon magnetosphere (EHM) in low luminosity accretion systems. Contrary to some models, the spine is not an invisible powerful jet. It is an intrinsically weak jet. In the new EHM solution, the accreted poloidal magnetic flux is weak and the background photon field is weak. It is shown how this accretion scenario naturally results in the dissipation of the accreted poloidal magnetic flux in the EHM not the accumulation of poloidal flux required for a powerful jet. The new solution indicates less large scale poloidal magnetic flux (and jet power) in the EHM than in the surrounding accretion flow and cannot support significant EHM driven jets.Peer reviewe

    Dynamic Boundaries of Event Horizon Magnetospheres

    Full text link
    This Letter analyzes 3-dimensional simulations of Kerr black hole magnetospheres that obey the general relativistic equations of perfect magnetohydrodynamics (MHD). Particular emphasis is on the event horizon magnetosphere (EHM) which is defined as the the large scale poloidal magnetic flux that threads the event horizon of a black hole (This is distinct from the poloidal magnetic flux that threads the equatorial plane of the ergosphere, which forms the ergospheric disk magnetosphere). Standard MHD theoretical treatments of Poynting jets in the EHM are predicated on the assumption that the plasma comprising the boundaries of the EHM plays no role in producing the Poynting flux. The energy flux is electrodynamic in origin and it is essentially conserved from the horizon to infinity, this is known as the Blandford-Znajek (B-Z) mechanism. To the contrary, within the 3-D simulations, the lateral boundaries are strong pistons for MHD waves and actually inject prodigious quantities of Poynting flux into the EHM. At high black hole spin rates, strong sources of Poynting flux adjacent to the EHM from the ergospheric disk will actually diffuse to higher latitudes and swamp any putative B-Z effects. This is in contrast to lower spin rates, which are characterized by much lower output powers and modest amounts of Poynting flux are injected into the EHM from the accretion disk corona.Comment: To appear in MNRAS Letters. A high resolution version can be found at: http://85.20.11.14/hosting/punsly/MNRAS%20Letter7.20.07

    Unbiased risk estimation and scoring rules

    Get PDF
    Stein unbiased risk estimation is generalized twice, from the Gaussian shift model to nonparametric families of smooth densities, and from the quadratic risk to more general divergence type distances. The development relies on a connection with local proper scoring rules.Comment: This is the author's version of a work that was accepted for publication in Comptes rendus Mathematiqu

    Charge orderings in the atomic limit of the extended Hubbard model

    Full text link
    The extended Hubbard model in the atomic limit (AL-EHM) on a square lattice with periodic boundary conditions is studied with use of the Monte Carlo (MC) method. Within the grand canonical ensemble the phase and order-order boundaries for charge orderings are obtained. The phase diagrams include three types of charge ordered phases and the nonordered phase. The system exhibits very rich structure and shows unusual multicritical behavior. In the limiting case of tij = 0, the EHM is equivalent to the pseudospin model with single-ion anisotropy 1/2U, exchange interaction W in an effective magnetic field (mu-1/2U-zW). This classical spin model is analyzed using the MC method for the canonical ensemble. The phase diagram is compared with the known results for the Blume-Capel model.Comment: 9 pages, 10 figure

    The plant-pathogen haustorial interface at a glance

    Get PDF
    Many filamentous pathogens invade plant cells through specialized hyphae called haustoria. These infection structures are enveloped by a newly synthesized plant-derived membrane called the extrahaustorial membrane (EHM). This specialized membrane is the ultimate interface between the plant and pathogen, and is key to the success or failure of infection. Strikingly, the EHM is reminiscent of host-derived membrane interfaces that engulf intracellular metazoan parasites. These perimicrobial interfaces are critical sites where pathogens facilitate nutrient uptake and deploy virulence factors to disarm cellular defenses mounted by their hosts. Although the mechanisms underlying the biogenesis and functions of these host-microbe interfaces are poorly understood, recent studies have provided new insights into the cellular and molecular mechanisms involved. In this Cell Science at a Glance and the accompanying poster, we summarize these recent advances with a specific focus on the haustorial interfaces associated with filamentous plant pathogens. We highlight the progress in the field that fundamentally underpin this research topic. Furthermore, we relate our knowledge of plant-filamentous pathogen interfaces to those generated by other plant-associated organisms. Finally, we compare the similarities between host-pathogen interfaces in plants and animals, and emphasize the key questions in this research area
    corecore