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The plant–pathogen haustorial interface at a glance
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ABSTRACT
Many filamentous pathogens invade plant cells through
specialized hyphae called haustoria. These infection structures
are enveloped by a newly synthesized plant-derived membrane
called the extrahaustorial membrane (EHM). This specialized
membrane is the ultimate interface between the plant and
pathogen, and is key to the success or failure of infection.
Strikingly, the EHM is reminiscent of host-derived membrane
interfaces that engulf intracellular metazoan parasites. These

perimicrobial interfaces are critical sites where pathogens facilitate
nutrient uptake and deploy virulence factors to disarm cellular
defenses mounted by their hosts. Although the mechanisms
underlying the biogenesis and functions of these host–microbe
interfaces are poorly understood, recent studies have provided new
insights into the cellular and molecular mechanisms involved. In
this Cell Science at a Glance and the accompanying poster, we
summarize these recent advances with a specific focus on the
haustorial interfaces associated with filamentous plant pathogens.
We highlight the progress in the field that fundamentally underpin
this research topic. Furthermore, we relate our knowledge of
plant–filamentous pathogen interfaces to those generated by other
plant-associated organisms. Finally, we compare the similarities
between host–pathogen interfaces in plants and animals, and
emphasize the key questions in this research area.
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Introduction
Plant pathogens produce specialized cellular structures that invade
host cells but remain enveloped by host-derived membranes. One
such structure is the haustorium produced by many species of fungi
and oomycetes (herein referred to as filamentous pathogens)
(Panstruga and Dodds, 2009). Haustoria form tight membrane
interfaces between these plant pathogens and their invaded host
cells (haustoriated cells) (Bozkurt et al., 2015, 2014; Whisson et al.,
2016; Bozkurt et al., 2011) and resemble to some degree host-
derived membrane interfaces that engulf intracellular metazoan
parasites (Haldar et al., 2006). These interfaces are a key cellular site
of the tug-of-war between pathogens and their hosts, which ends in
either host colonization or pathogen arrest.
Our understanding of the biogenesis and functions of plant–

pathogen interfaces remains somewhat superficial, but recent
advances have yielded new insights into cellular and molecular
mechanisms. Here, we summarize this new knowledge with a focus
on the haustorial interfaces associated with filamentous pathogens.
We emphasize the two major questions that underpin this research
topic, how are plant–pathogen membrane interfaces formed and
what are the functions of haustoria? We also relate our understanding
of plant-filamentous pathogen interfaces to other interfaces generated
by other plant-associated organisms (see Box 1).

The haustorial interface
Haustoria are thought to facilitate exchange of macromolecules
between the host and the pathogen. These specialized infection
compartments are typically separated from the host cytoplasm
through a newly synthesized plant-derived membrane called the
extrahaustorial membrane (EHM) (Bozkurt et al., 2015, 2014;
Whisson et al., 2016; Bozkurt et al., 2011). The haustorial interface
is demarcated on one side by the EHM and on the other by the
pathogen membrane and cell wall that surround the haustorium (see
poster). These are separated by an extracellular matrix called the
extrahaustorial matrix (EHMX) (Peresypkin et al., 1979; Baka,
2002). The number of haustoria per haustoriated host cell varies
depending on the pathogen. Both oomycetes and fungi can form
multiple haustoria in an individual plant cell (Bindschedler et al.,
2009). However, unlike in oomycetes, the fungal haustorium is
typically a separate cell that has its own nucleus with a haustorial
neckband marking the cell border. Unlike intracellular hypha that can
grow relentlessly and invade neighboring cells, haustoria remain
restricted to infected host cells and are a terminal hyphal state.

Phylogenetically unrelated filamentous pathogens, such as the
oomycetes, powdery mildew ascomycetes and rust basidiomycetes
have evolved the haustorial lifestyle independently (Latijnhouwers
et al., 2003). Despite their common physiological identity, the
precise molecular features of the haustorial interfaces produced by
these different classes of filamentous pathogens are unlikely to be
the same even though some common features have been noted, as
described herein.

Haustoria are not limited to filamentous pathogens. Strikingly,
parasitic plants also form haustoria to tap into nutrient resources of
their host plants (see Box 1). The convergent evolution of
haustoria in divergent filamentous pathogens and parasitic plants
further points to their importance for successful parasitism on
plants.

Molecular traffic across the haustorial interface
The specific accumulation of a sugar transporter at fungal haustoria
provided the evidence that haustoria can mediate nutrient uptake
(Mendgen and Nass, 1988; Hahn et al., 1997; Voegele et al., 2001).
However, direct evidence for the channeling of nutrients through the
haustorial interface is still generally lacking. More recently,
haustorial interfaces have emerged as delivery sites of pathogen-
encoded virulence factors known as effectors (Kemen et al., 2005;
Whisson et al., 2007; Wang et al., 2018); these not only include
proteins, but also various species of RNAs with immunomodulatory
functions produced by parasitic plants (Box 1; see poster). Fungal
and filamentous pathogens also appear to deploy small RNAs inside
their host cells to subvert host immunity (Sperschneider et al.,
2018preprint; Dunker et al., 2019, preprint). However, it is not clear
whether these nucleic acids are specifically transported through the
haustorial interface. More importantly, the inter-organismal
transport mechanisms across the haustorial interface remain
uncharacterized. One possible transport mechanism could employ
extracellular vesicles (EVs), which have established roles in cell-to-
cell communication (see poster). Supporting this view, EVs with
unknown identity have been observed at the EHMX during fungal
invasion of plant cells (Micali et al., 2011). Furthermore, the finding
that both pathogens and plant can discharge EVs with
immunomodulatory functions (Bahar et al., 2016; Wang et al.,
2017a,b; Cai et al., 2018; Baldrich et al., 2019) has sparked renewed
interest in dissecting the contents and functions of the EVs deployed
at the haustorial interface.

Effector delivery through the EHM
Specialized filamentous pathogens deliver effectors inside host cells
to downregulate plant immunity and promote infection (Bozkurt
et al., 2012; Thordal-Christensen et al., 2018). However, how these
effectors enter plant cells remains a mystery. The majority of host-
translocated oomycete effectors carry a conserved amino acid
region defined by the RXLR motif that follows the N-terminal
secretion signal (Whisson et al., 2007). The RXLR domain is
dispensable for effector activities inside the host cells and mediates
host translocation, similar to the PEXEL element found in
plasmodium effectors (Hiller et al., 2004; Bozkurt et al., 2012).
Like the PEXEL element, the RXLR motif undergoes proteolytic
cleavage inside the parasite, with mature effectors lacking the motif
(Boddey et al., 2016; Wawra et al., 2017). However, the precise
mechanism by which the RXLR domain mediates effector
translocation is still under debate, as the proposed models lack
conclusive experimental evidence (Petre and Kamoun, 2014). For
instance, the hypothesis that effector uptake takes place via binding
of the RXLR motif to plant-derived phospholipids at the plant cell

Box 1. Parasitic plants form haustoria too!
Parasitic plants produce specialized structures– also known as haustoria –
to acquirewater and nutrients from their hosts (Yoshida and Shirasu, 2012;
Kokla andMelnyk, 2018). Although the haustoria of parasitic plants appear
to be functionally analogous to those of filamentous pathogens, they
result in very distinct interfaces with the host plants. In contrast to
filamentous pathogens, haustoria of parasitic plants are multicellular
organs that differentiate from stems and roots to penetrate host tissue
and directly connect the parasite vasculature to that of its host. Haustoria
thus enable the parasite to siphon nutrients and create an interface that
facilitates bidirectional exchanges of macromolecules. Among the
trafficking trans-species molecules are various types of RNA, including
mRNAs and microRNAs (miRNAs). Although the precise functions of
these RNAs are still being elucidated, trans-species RNA produced by
the parasite mediate the cleavage of host mRNAs to modulate host gene
expression presumably to the parasite’s advantage (Shahid et al., 2018;
Johnson and Axtell, 2019).
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surface contradicts the finding that the RXLRmotif is cleaved inside
the pathogen prior to secretion (Wawra et al., 2017). In addition,
more recent findings point to non-conventional secretory routes for
host-translocation of RXLR effectors through the haustorial
interface (Wang et al., 2017a,b; Wang et al., 2018).
The process of effector delivery is likely to have emerged

multiple times throughout the evolution of filamentous pathogens.
Unlike what is seen for oomycetes, conserved cell entry motifs and
domains have not been identified in fungal effectors (Petre and
Kamoun, 2014). The process is likely to be different in fungi as
fungal haustoria are separate cells with nuclei and other organelles.
(Petre and Kamoun, 2014). Because the fungal haustorium cell is
accommodated inside the plant cell, it is assumed that the majority
of the proteins secreted by fungal haustorium are either host-
translocated or function at the EHMX. The translocation of effectors
through the haustorial interface could possibly occur by
(1) receptor-mediated endocytosis, (2) fusion of EVs loaded with
effectors, or (3) through active transport facilitated by a pathogen-
encoded translocon (see poster), as is the case in the apicomplexan
parasite Plasmodium (Matthews et al., 2019).

EHM composition is different from the plasma membrane
One striking observation, originally made over a decade ago, is that
the protein and lipid composition of the EHM contrasts sharply with
that of the adjacent plasma membrane. Most of the proteins
embedded in the plasma membrane, such as surface immune
receptors, are excluded from the EHM (Koh et al., 2005; Micali et al.,
2011; Lu et al., 2012). The few exceptions include the membrane-
associated remorin protein REM1.3 and the vesicle fusion protein
SYT1. Particularly, REM1.3 and SYT1 are exclusively localized to
discrete micro-domains along the EHM, revealing that the EHM is
not a uniform interface (Bozkurt et al., 2014) (see poster).
Furthermore, the plasma membrane-localized pattern recognition
receptor FLS2 is found to label the EHM of the oomycete pathogen
Hyaloperonospora arabidopsidis (HPA) but not that ofPhytophthora
infestans. This indicates that the EHM composition varies depending
on the pathosystem, although experimental differences between
systems cannot be totally ruled out (Lu et al., 2012).
In some cases, the EHM remains isolated from the rest of the

cytosol through encasements that are formed by defense-related
focal deployment of the plant cell wall material callose (Micali
et al., 2011; Caillaud et al., 2014). In contrast, haustoria of the
oomycete pathogen P. infestans are generally not fully encased,
with only 20% of the haustoria showing a ‘collar’ of callose around
the haustorial neck (Bozkurt et al., 2014), indicating that pathogens
can further modify the perihaustorial niche or that the host
prevents encasement. It is conceivable that the callose
encasements contribute to the overall defense mechanisms by
preventing pathogen access to host resources and defense systems.
However, the degree to which pathogens suppress haustoria-related
defense processes, such as callose encasements, is not understood.

Rerouting of host-endocytic pathways to the haustorial
interface
How infected plant cells selectively sort proteins into the EHM is
poorly understood. The emerging paradigm is that diverse
vesicular pathways may converge toward the EHM to generate a
mosaic membrane interface (see poster). The EHM appears to
accommodate proteins from diverse origins, including the
plasma membrane, the vacuolar membrane, endocytic vesicles,
plasmodesmata and the ER (Wang et al., 2009; Bozkurt et al., 2014,
2015; Caillaud et al., 2014; Inada et al., 2016; Kwaaitaal et al.,

2017; Dagdas et al., 2018). It is plausible that redirection of multiple
stress-related transport routes accounts for EHM biogenesis and
maturation. Consistent with this notion, the vacuole-targeted late
endocytic pathway marked by the small GTPase RabG3c (a Rab7
family member) is diverted toward the EHM during P. infestans
infection of the solanaceous model plant Nicotiana benthamiana
(Lu et al., 2012; Bozkurt et al., 2015). Upon activation, some PRRs
are re-routed to the EHM through late endosomes (Bozkurt et al.,
2015). However, it is unknown whether these PRRs are active in
signaling or trapped at the haustorial interface by the pathogen in
order to prevent their recycling back to cell surface, thus helping to
suppress the host immune response.

Differential rerouting of the early endosomes (marked by Rab5),
but not late endosomes (marked by RabG3f) towards the EHM has
been observed in Arabidopsis leaves infected by two different
oomycete pathogens (Lu et al., 2012). In contrast, the early
endosomal marker Rab5 is excluded from the EHM engulfing the
hemibiothrophic fungal pathogen Colletotrichum higginsianum
(Inada et al., 2016). These findings further highlight that EHM
composition varies in different pathosystems, which could be due to
the divergent strategies employed by pathogens to manipulate the
EHM to support virulence. In support of this notion, several host-
translocated RXLR effectors of Phytophthora accumulate and
probably target the EHM (Bozkurt et al., 2011; Wang et al., 2019)
(see poster), but how they reconfigure the EHM for the benefit of the
pathogen remains to be elucidated.

Interestingly, REM1.3 and RabG3C label only about half of the
EHM enveloping the P. infestans haustoria, suggesting that the
EHM is a dynamic interface that undergoes maturation (Bozkurt
et al., 2014, 2015). In agreement with this notion, Arabidopsis
PLASMODESMATA-LOCATED PROTEIN 1 (PDLP1) localizes
only to the non-encased EHM of the oomycete pathogen
H. arabidopsidis (Caillaud et al., 2014). Thus, it is possible that
the EHM is modified gradually, starting from the initial haustoria
formation to its subsequent maturation and ultimate encasement,
and pathogens could actively manipulate this process through host-
translocated effectors.

Diversion of autophagy machinery to the pathogen interface
Autophagy is a conserved eukaryotic trafficking process, in which
cellular components and microbes are removed or relocated after
engulfment in vesicular double-membrane-enclosed structures
called autophagosomes (Lamb et al., 2013; Dagdas et al., 2018).
Interestingly, selective forms of autophagy are induced at the
perimicrobial interfaces in both plant and metazoan cells to
counteract pathogen invasion (Thurston et al., 2012; Choi et al.,
2014; Haldar et al., 2014; Schmuckli-Maurer et al., 2017; Wacker
et al., 2017; Dagdas et al., 2018; Real et al., 2018). In plants, a
defense-related autophagy machinery comprising the autophagy
cargo receptor NBR1 (also known as Joka2) and the core autophagy
adaptor ATG8 (ATG8CL isoform) target the EHM during
P. infestans infection (see poster) (Dagdas et al., 2016). The
pathogen counteracts this by deploying an RXLR effector called
PexRD54. PexRD54 antagonizes NBR1 function by outcompeting
it for ATG8CL binding, thereby neutralizing the defense-related
autophagy at the haustorial interface (Dagdas et al., 2016, 2018).
Thus, the autophagy machinery appears to participate in complex
immune functions at perimicrobial membrane interfaces.

Unlike the many effectors of metazoan parasites that inhibit
autophagy, PexRD54 stimulates formation of autophagosomes that
accumulate at the haustorial interface (see poster). Why this is the
case and what cargoes these autophagosomes carry remains
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uncharacterized. One hypothesis is that PexRD54 co-opts the host
autophagy machinery as a molecular sink to absorb nutrients
through the haustorial interface.

Organelle trafficking to the pathogen interface
Early work showed that some plant organelles accumulate around
the haustorial interface (Heath et al., 1997; Koh et al., 2005) (see
poster). However, the mechanisms bywhich organelles are recruited
to pathogen interface and how they function at these sites are
unknown. Positioning the plant endomembrane system (nucleus,
ER, Golgi and secretory vesicles) around the haustorial interface is
considered to aid localized deployment of defense-related
compounds (Schmelzer, 2002; Underwood and Somerville, 2008).
Interestingly, the ER surrounding fungal haustoria in Arabidopsis has
a different morphology from the remainder of the ER network, for
example by exhibiting swollen tubes (Micali et al., 2011). Altered ER
morphology correlates with restricted intra-luminal ER transport
(Tolley et al., 2008). These changes in ER morphology could be
possibly triggered by pathogens to counteract the focal deployment of
secretory components to the haustorial interface.
Intriguingly, host mitochondria have also been reported to

accumulate around the EHM during fungal invasion of barley
(Kunoh and Ishizaki, 1973; Micali et al., 2011; Fuchs et al., 2016).
Although how and why mitochondria are targeted to the haustorial
interface is unknown, electron microscopy images revealed intimate
interactions betweenmitochondria and the EHM, such as membrane
fusions (Kunoh and Ishizaki, 1973). Likewise, chloroplasts also
accumulate at the haustorial interface and form tubular extensions
embracing the EHM (Toufexi et al., 2019 preprint). Notably, the
chloroplast photorelocation protein CHLOROPLAST UNUSUAL
POSITIONING 1 (CHUP1) is required for the perihaustorial
positioning of chloroplasts and immunity against P. infestans
(Toufexi et al., 2019preprint). These findings implicate chloroplasts
in plant immunity, but the exact defense-related functions of
perihaustorial chloroplasts remain to be elucidated.

Similarities between plant–pathogen and animal–parasite
interfaces
The differences in EHM composition compared to the plasma
membrane are reminiscent of the perimicrobial membrane interfaces
that engulf metazoan parasites (Haldar et al., 2006). Intracellular
mammalian parasites typically deploy a variety of effector proteins
to divert the trafficking of Rab GTPases to the pathogen interface
(Asrat et al., 2014). Interestingly, these Rab GTPases include Rab5
and Rab7 family proteins, which are also found to localize to the
EHM of filamentous plant pathogens as discussed above. The host-
derived membranes that engulf Salmonella enterica are marked by
Rab5, whereas Rab7 is recruited during later stages of infection
(Drecktrah et al., 2007). Such a stepwise maturation of the
perimicrobial membrane interfaces could also be the underlying
reason for partial labelling of the EHM with Rab7 (∼50%) we
observed during P. infestans infection (Bozkurt et al., 2015).
Strikingly, a time-dependent accumulation of Rab7 also occurs
during maturation of the Leishmania-containing parasitophorous
vacuole membrane (PVM) in mammalian cells, where Rab7 labels
70% of the PVMs within 30 min after infection and reaching
complete coverage within 48 h (Courret et al., 2002). Interestingly,
the early endosomal marker Rab5 was found to be excluded from
Leishmania PVM in mammalian cells (Courret et al., 2002), which
is similar to what is found for the C. higginsianum (hemibiotrhopic
fungus) EHM in Arabidopsis (Inada et al., 2016). However, there
are also differences in Rab requirement, as Mycobacterium

phagosomal compartments in mammalian cells are Rab5 positive
but lack Rab7 in mammalian cells (Via et al., 1997), which is similar
to the EHM of biotrophic filamentous plant pathogens infecting
Arabidopsis (Inada et al., 2016).

Another similarity between plant–pathogen and mammalian–
parasite interfaces is the induction of autophagy responses that are
directed towards the pathogens, which are contained in modified
phagosomal compartments, similar to recent observations with
P. infestans (Dagdas et al., 2016, 2018). For instance, components
of mammalian autophagy machinery such as ATG8 (the LC3/
GABRAP family in mammalian cells) as well as the autophagy
cargo receptors p62 (also known as SQSTM) and NBR1 target the
peri-microbial membrane interface engulfing the Plasmodium
parasite (Schmuckli-Maurer et al., 2017; Wacker et al., 2017; Real
et al., 2018) (see poster). Interestingly, similar to the P. infestans
RXLR effector PexRD54, one of the PVM-embedded plasmodium
effector proteins, called UIS3, binds to the mammalian ATG8
isoform LC3 to avoid being degraded by autophagy (Real et al.,
2018). Similar to antagonistic relationship between PexRD54 and
the plant autophagy receptor NBR1 that occurs at the EHM, UIS3
outcompetes the mammalian autophagy cargo receptors for ATG8
(LC3) binding at the PVM (Real et al., 2018). Plant NBR1 has a
similar domain architecture and shares functional features of the
mammalian autophagy receptors NBR1 and p62 (Svenning et al.,
2011). It is not clear whether these autophagy cargo receptors
convergently evolved to counteract microbial penetration of host
cells. Nevertheless, it appears that both plant and mammalian
parasites have developed similar strategies to disarm host cargo
receptors at the pathogen interface.

Conclusions and outlook
Despite the fact that phylogenetically diverse filamentous
pathogens have convergently evolved the capacity to form
haustoria and trigger the EHM interface with their plant hosts,
there are some common principles. One common strategy employed
by filamentous pathogens for successful invasion of the host cells is
the reprogramming of host membrane trafficking pathways to avoid
destruction by the host cellular defenses and facilitate efficient
uptake of nutrients and possibly effector delivery. In addition, there
are striking similarities in the processes that accommodate
pathogens between plants and animals, some of which could
possibly have originated from the ancestral eukaryotic cell. Future
studies and emerging experimental systems, such as the fast-forward
cell biology depicted in the poster, will help to further determine
commonalities and differences across pathosystems and address
pertinent questions about the haustorial interface. What are the
mechanisms underlying the biogenesis and functions of the EHM?
Does immune signaling take place at the pathogen interface? Towhat
extent do pathogens manipulate the EHM for their own benefit? Does
the EHM content differ depending on pathogen infection style?What
are the origins and contents of the vesicles observed at the EHMX?
Why and how do organelles traffic to the haustorial interface? How
are nutrients and effectors transported across the haustorial interface?
How is the autophagy machinery recruited to haustorial interface and
how does it contribute to plant immunity? Answering these questions
will further unveil the complex molecular and cellular processes that
take place at the haustorial interface.
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