4,560 research outputs found

    Converting Your Thoughts to Texts: Enabling Brain Typing via Deep Feature Learning of EEG Signals

    Full text link
    An electroencephalography (EEG) based Brain Computer Interface (BCI) enables people to communicate with the outside world by interpreting the EEG signals of their brains to interact with devices such as wheelchairs and intelligent robots. More specifically, motor imagery EEG (MI-EEG), which reflects a subjects active intent, is attracting increasing attention for a variety of BCI applications. Accurate classification of MI-EEG signals while essential for effective operation of BCI systems, is challenging due to the significant noise inherent in the signals and the lack of informative correlation between the signals and brain activities. In this paper, we propose a novel deep neural network based learning framework that affords perceptive insights into the relationship between the MI-EEG data and brain activities. We design a joint convolutional recurrent neural network that simultaneously learns robust high-level feature presentations through low-dimensional dense embeddings from raw MI-EEG signals. We also employ an Autoencoder layer to eliminate various artifacts such as background activities. The proposed approach has been evaluated extensively on a large- scale public MI-EEG dataset and a limited but easy-to-deploy dataset collected in our lab. The results show that our approach outperforms a series of baselines and the competitive state-of-the- art methods, yielding a classification accuracy of 95.53%. The applicability of our proposed approach is further demonstrated with a practical BCI system for typing.Comment: 10 page

    Deep Learning Techniques for Electroencephalography Analysis

    Get PDF
    In this thesis we design deep learning techniques for training deep neural networks on electroencephalography (EEG) data and in particular on two problems, namely EEG-based motor imagery decoding and EEG-based affect recognition, addressing challenges associated with them. Regarding the problem of motor imagery (MI) decoding, we first consider the various kinds of domain shifts in the EEG signals, caused by inter-individual differences (e.g. brain anatomy, personality and cognitive profile). These domain shifts render multi-subject training a challenging task and impede robust cross-subject generalization. We build a two-stage model ensemble architecture and propose two objectives to train it, combining the strengths of curriculum learning and collaborative training. Our subject-independent experiments on the large datasets of Physionet and OpenBMI, verify the effectiveness of our approach. Next, we explore the utilization of the spatial covariance of EEG signals through alignment techniques, with the goal of learning domain-invariant representations. We introduce a Riemannian framework that concurrently performs covariance-based signal alignment and data augmentation, while training a convolutional neural network (CNN) on EEG time-series. Experiments on the BCI IV-2a dataset show that our method performs superiorly over traditional alignment, by inducing regularization to the weights of the CNN. We also study the problem of EEG-based affect recognition, inspired by works suggesting that emotions can be expressed in relative terms, i.e. through ordinal comparisons between different affective state levels. We propose treating data samples in a pairwise manner to infer the ordinal relation between their corresponding affective state labels, as an auxiliary training objective. We incorporate our objective in a deep network architecture which we jointly train on the tasks of sample-wise classification and pairwise ordinal ranking. We evaluate our method on the affective datasets of DEAP and SEED and obtain performance improvements over deep networks trained without the additional ranking objective
    • …
    corecore