662 research outputs found

    Converting Your Thoughts to Texts: Enabling Brain Typing via Deep Feature Learning of EEG Signals

    Full text link
    An electroencephalography (EEG) based Brain Computer Interface (BCI) enables people to communicate with the outside world by interpreting the EEG signals of their brains to interact with devices such as wheelchairs and intelligent robots. More specifically, motor imagery EEG (MI-EEG), which reflects a subjects active intent, is attracting increasing attention for a variety of BCI applications. Accurate classification of MI-EEG signals while essential for effective operation of BCI systems, is challenging due to the significant noise inherent in the signals and the lack of informative correlation between the signals and brain activities. In this paper, we propose a novel deep neural network based learning framework that affords perceptive insights into the relationship between the MI-EEG data and brain activities. We design a joint convolutional recurrent neural network that simultaneously learns robust high-level feature presentations through low-dimensional dense embeddings from raw MI-EEG signals. We also employ an Autoencoder layer to eliminate various artifacts such as background activities. The proposed approach has been evaluated extensively on a large- scale public MI-EEG dataset and a limited but easy-to-deploy dataset collected in our lab. The results show that our approach outperforms a series of baselines and the competitive state-of-the- art methods, yielding a classification accuracy of 95.53%. The applicability of our proposed approach is further demonstrated with a practical BCI system for typing.Comment: 10 page

    A binary method for simple and accurate two-dimensional cursor control from EEG with minimal subject training

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brain-computer interfaces (BCI) use electroencephalography (EEG) to interpret user intention and control an output device accordingly. We describe a novel BCI method to use a signal from five EEG channels (comprising one primary channel with four additional channels used to calculate its Laplacian derivation) to provide two-dimensional (2-D) control of a cursor on a computer screen, with simple threshold-based binary classification of band power readings taken over pre-defined time windows during subject hand movement.</p> <p>Methods</p> <p>We tested the paradigm with four healthy subjects, none of whom had prior BCI experience. Each subject played a game wherein he or she attempted to move a cursor to a target within a grid while avoiding a trap. We also present supplementary results including one healthy subject using motor imagery, one primary lateral sclerosis (PLS) patient, and one healthy subject using a single EEG channel without Laplacian derivation.</p> <p>Results</p> <p>For the four healthy subjects using real hand movement, the system provided accurate cursor control with little or no required user training. The average accuracy of the cursor movement was 86.1% (SD 9.8%), which is significantly better than chance (p = 0.0015). The best subject achieved a control accuracy of 96%, with only one incorrect bit classification out of 47. The supplementary results showed that control can be achieved under the respective experimental conditions, but with reduced accuracy.</p> <p>Conclusion</p> <p>The binary method provides naïve subjects with real-time control of a cursor in 2-D using dichotomous classification of synchronous EEG band power readings from a small number of channels during hand movement. The primary strengths of our method are simplicity of hardware and software, and high accuracy when used by untrained subjects.</p

    Brain-computer interface algorithm based on wavelet-phase stability analysis in motor imagery experiment

    Get PDF
    Severe movement or motor disability diseases such as amyotrophic lateral sclerosis (ALS), cerebral palsy (CB), and muscular dystrophy (MD) are types of diseases which lead to the total of function loss of body parts, usually limbs. Patient with an extreme motor impairment might suffers a lockedin state, resulting in the difficulty to perform any physical movements. These diseases are commonly being treated by a specific rehabilitation procedure with prescribed medication. However, the recovery process is time-consuming through such treatments. To overcome these issues, Brain- Computer Interface system is introduced in which one of its modalities is to translate thought via electroencephalography (EEG) signals by the user and generating desired output directly to an external artificial control device or human augmentation. Here, phase synchronization is implemented to complement the BCI system by analyzing the phase stability between two input signals. The motor imagery-based experiment involved ten healthy subjects aged from 24 to 30 years old with balanced numbers between male and female. Two aforementioned input signals are the respective reference data and the real time data were measured by using phase stability technique by indicating values range from 0 (least stable) to 1 (most stable). Prior to that, feature extraction was utilized by applying continuous wavelet transform (CWT) to quantify significant features on the basis of motor imagery experiment which are right and left imaginations. The technique was able to segregate different classes of motor imagery task based on classification accuracy. This study affirmed the approach’s ability to achieve high accuracy output measurements

    Empirical Comparison of Machine Learning Algorithms Based on EEG data

    Get PDF
    Selle töö eesmärgiks on võrrelda erinevaid masinõppealgoritme ning üritada leida nende hulgast parim EEG andmete klassifitseerimise jaoks. Selle saavutamiseks klassifitseeriti 10 inimese andmeid 10 masinõppealgoritmi poolt. Algoritme võrreldi kolmel viisil: esiteks võrreldi neid kolme erineva jõudlust iseloomustava näitaja alusel, teiseks kasutati klasteranalüüsi meetodeid ja dendrogramme ning viimaks kasutati selleks korrelatsioonimaatrikseid. Saadud võrdluse tulemused näitavad, et optimeerimata parameetrite korral on logistilise regressiooni mudel kõige efektiivsem algoritm EEG andmete klassifitseerimisel. Optimeeritud parameetrite korral on kõige efektiivsemaks algoritmiks juhumets.The aim of this work is to compare different machine learning algorithms in an attempt to find the best one for classifying EEG data. In order to achieve this, the data from ten subjects were classified by ten machine learning algorithms. The algorithms were compared in three ways: Firstly, they were compared by using three performance metrics, secondly, by using clustergrams and lastly, by using corralation matrices. The results from the comparison show that the without parameter optimization, logistic regression model is the most efficient algorithm for classifying EEG data. However, with parameter optimization, random forest is the most efficient algorithm for classifying EEG data

    Improving EEG-Based Motor Imagery Classification for Real-Time Applications Using the QSA Method

    Get PDF
    We present an improvement to the quaternion-based signal analysis (QSA) technique to extract electroencephalography (EEG) signal features with a view to developing real-time applications, particularly in motor imagery (IM) cognitive processes. The proposed methodology (iQSA, improved QSA) extracts features such as the average, variance, homogeneity, and contrast of EEG signals related to motor imagery in a more efficient manner (i.e., by reducing the number of samples needed to classify the signal and improving the classification percentage) compared to the original QSA technique. Specifically, we can sample the signal in variable time periods (from 0.5 s to 3 s, in half-a-second intervals) to determine the relationship between the number of samples and their effectiveness in classifying signals. In addition, to strengthen the classification process a number of boosting-technique-based decision trees were implemented. The results show an 82.30% accuracy rate for 0.5 s samples and 73.16% for 3 s samples. This is a significant improvement compared to the original QSA technique that offered results from 33.31% to 40.82% without sampling window and from 33.44% to 41.07% with sampling window, respectively. We can thus conclude that iQSA is better suited to develop real-time applications
    corecore