225 research outputs found

    Explicit rate control for MANET

    Full text link
    Streaming applications over Mobile Ad-hoc Networks (MANET) require a smooth transmission rate. The Internet is unable to provide this service during traffic congestion in the network. Designing congestion control for these applications is challenging, because the standard TCP congestion control mechanism is not able to handle the special properties of a shared wireless multi hop channel well. In particular, the frequent changes to the network topology and the shared nature of the wireless channel pose major challenges. In this paper, we propose a novel approach, which allows a quick increase of throughput by using explicit feedback from routers

    Greediness control algorithm for multimedia streaming in wireless local area networks

    Get PDF
    This work investigates the interaction between the application and transport layers while streaming multimedia in a residential Wireless Local Area Network (WLAN). Inconsistencies have been identified that can have a severe impact on the Quality of Experience (QoE) experienced by end users. This problem arises as a result of the streaming processes reliance on rate adaptation engines based on congestion avoidance mechanisms, that try to obtain as much bandwidth as possible from the limited network resources. These upper transport layer mechanisms have no knowledge of the media which they are carrying and as a result treat all traffic equally. This lack of knowledge of the media carried and the characteristics of the target devices results in fair bandwidth distribution at the transport layer but creates unfairness at the application layer. This unfairness mostly affects user perceived quality when streaming high quality multimedia. Essentially, bandwidth that is distributed fairly between competing video streams at the transport layer results in unfair application layer video quality distribution. Therefore, there is a need to allow application layer streaming solutions, tune the aggressiveness of transport layer congestion control mechanisms, in order to create application layer QoE fairness between competing media streams, by taking their device characteristics into account. This thesis proposes the Greediness Control Algorithm (GCA), an upper transport layer mechanism that eliminates quality inconsistencies caused by rate / congestion control mechanisms while streaming multimedia in wireless networks. GCA extends an existing solution (i.e. TCP Friendly Rate Control (TFRC)) by introducing two parameters that allow the streaming application to tune the aggressiveness of the rate estimation and as a result, introduce fair distribution of quality at the application layer. The thesis shows that this rate adaptation technique, combined with a scalable video format allows increased overall system QoE. Extensive simulation analysis demonstrate that this form of rate adaptation increases the overall user QoE achieved via a number of devices operating within the same home WLAN

    Slight-Delay Shaped Variable Bit Rate (SD-SVBR) Technique for Video Transmission

    Get PDF
    The aim of this thesis is to present a new shaped Variable Bit Rate (VBR) for video transmission, which plays a crucial role in delivering video traffic over the Internet. This is due to the surge of video media applications over the Internet and the video typically has the characteristic of a highly bursty traffic, which leads to the Internet bandwidth fluctuation. This new shaped algorithm, referred to as Slight Delay - Shaped Variable Bit Rate (SD-SVBR), is aimed at controlling the video rate for video application transmission. It is designed based on the Shaped VBR (SVBR) algorithm and was implemented in the Network Simulator 2 (ns-2). SVBR algorithm is devised for real-time video applications and it has several limitations and weaknesses due to its embedded estimation or prediction processes. SVBR faces several problems, such as the occurrence of unwanted sharp decrease in data rate, buffer overflow, the existence of a low data rate, and the generation of a cyclical negative fluctuation. The new algorithm is capable of producing a high data rate and at the same time a better quantization parameter (QP) stability video sequence. In addition, the data rate is shaped efficiently to prevent unwanted sharp increment or decrement, and to avoid buffer overflow. To achieve the aim, SD-SVBR has three strategies, which are processing the next Group of Picture (GoP) video sequence and obtaining the QP-to-data rate list, dimensioning the data rate to a higher utilization of the leaky-bucket, and implementing a QP smoothing method by carefully measuring the effects of following the previous QP value. However, this algorithm has to be combined with a network feedback algorithm to produce a better overall video rate control. A combination of several video clips, which consisted of a varied video rate, has been used for the purpose of evaluating SD-SVBR performance. The results showed that SD-SVBR gains an impressive overall Peak Signal-to-Noise Ratio (PSNR) value. In addition, in almost all cases, it gains a high video rate but without buffer overflow, utilizes the buffer well, and interestingly, it is still able to obtain smoother QP fluctuation

    Improving the Quality of Real Time Media Applications through Sending the Best Packet Next

    Get PDF
    Real time media applications such as video conferencing are increasing in usage. These bandwidth intensive applications put high demands on a network and often the quality experienced by the user is sub-optimal. In a traditional network stack, data from an application is transmitted in the order that it is received. This thesis proposes a scheme called "Send the Best Packet Next (SBPN)" where the most important data is transmitted first and data that will not reach the receiver before an expiry time is not transmitted. In SBPN the packet priority and expiry time are added to a packet and used in conjunction with the Round Trip Time (RTT) to determine whether packets are sent, and in which order that they are sent. For example, it has been shown that audio is more important to users than video in video conferencing. SBPN could be considered to be Quality of Service (QoS) that is within an application data stream. This is in comparison to network routers that provide QoS to whole streams such as Voice over IP (VoIP), but do not differentiate between data items within the stream or which data gets transmitted by the end nodes. Implementation of SBPN can be done on the server only, so that much of the benefit for one way transmission (e.g. live television) can be gained without requiring existing clients to be changed. SBPN was implemented in a Linux kernel on top of Datagram Congestion Control Protocol (DCCP) and compared to existing solutions. This showed real improvement in the measured quality of audio with a maximum improvement of 15% in selected test scenarios

    Adaptive multimedia streaming control algorithm in wireless LANs and 4G networks

    Get PDF
    E-learning has become an important service offered over the Internet. Lately many users are accessing learning content via wireless networks and using mobile devices. Most content is rich media-based and often puts significant pressure on the existing wireless networks in order to support high quality of delivery. In this context, offering a solution for improving user quality of experience when multimedia content is delivered over wireless networks is already a challenging task. Additionally, to support this for mobile e-learning over wireless LANs becomes even more difficult. If we want to increase the end-used perceived quality, we have to take into account the users’ individual set of characteristics. The fact that users have subjective opinions on the quality of a multimedia application can be used to increase their QoE by setting a minimum quality threshold below which the connection is considered to be undesired. Like this, the use of precious radio resources can be optimized in order to simultaneously satisfy an increased number of users. In this thesis a new user-oriented adaptive algorithm based on QOAS was designed and developed in order to address the user satisfaction problem. Simulations have been carried out with different adaptation schemes to compare the performances and benefits of the DQOAS mechanism. The simulation results are showing that using a dynamic stream granularity with a minimum threshold for the transmission rate, improves the overall quality of the multimedia delivery process, increasing the total number of satisfied users and the link utilization The good results obtained by the algorithm in IEEE 802.11 wireless environment, motivated the research about the utility of the newly proposed algorithm in another wireless environment, LTE. The study shows that DQOAS algorithm can obtain good results in terms of application perceived quality, when the considered application generates multiple streams. These results can be improved by using a new QoS parameters mapping scheme able to modify the streams’ priority and thus allowing the algorithms decisions to not be overridden by the systems’ scheduler

    A Spectrum of TCP-friendly Window-based Congestion Control Algorithms

    Get PDF
    The increasing diversity of Internet application requirements has spurred recent interest in transport protocols with flexible transmission controls. In window-based congestion control schemes, increase rules determine how to probe available bandwidth, whereas decrease rules determine how to back off when losses due to congestion are detected. The control rules are parameterized so as to ensure that the resulting protocol is TCP-friendly in terms of the relationship between throughput and loss rate. This paper presents a comprehensive study of a new spectrum of window-based congestion controls, which are TCP-friendly as well as TCP-compatible under RED
    corecore