5,649 research outputs found

    Categorisation of visualisation methods to support the design of Human-Computer Interaction systems

    Get PDF
    During the design of Human-Computer Interaction (HCI) systems, the creation of visual artefacts forms an important part of design. On one hand producing a visual artefact has a number of advantages: it helps designers to externalise their thought and acts as a common language between different stakeholders. On the other hand, if an inappropriate visualisation method is employed it could hinder the design process. To support the design of HCI systems, this paper reviews the categorisation of visualisation methods used in HCI. A keyword search is conducted to identify a) current HCI design methods, b) approaches of selecting these methods. The resulting design methods are filtered to create a list of just visualisation methods. These are then categorised using the approaches identified in (b). As a result 23 HCI visualisation methods are identified and categorised in 5 selection approaches (The Recipient, Primary Purpose, Visual Archetype, Interaction Type, and The Design Process).Innovate UK, EPSRC, Airbus Group Innovation

    Usability evaluation of a virtual museum interface

    Get PDF
    The Augmented Representation of Cultural Objects (ARCO) system provides software and interface tools to museum curators to develop virtual museum exhibitions, as well as a virtual environment for museum visitors over the World Wide Web or in informative kiosks. The main purpose of the system is to offer an enhanced educative and entertaining experience to virtual museum visitors. In order to assess the usability of the system, two approaches have been employed: a questionnaire based survey and a Cognitive Walkthrough session. Both approaches employed expert evaluators, such as domain experts and usability experts. The result of this study shows a fair performance of the followed approach, as regards the consumed time, financial and other resources, as a great deal of usability problems has been uncovered and many aspects of the system have been investigated. The knowledge gathered aims at creating a conceptual framework for diagnose usability problems in systems in the area of Virtual Cultural Heritage

    The design, development and evaluation of cross-platform mobile applications and services supporting social accountability monitoring

    Get PDF
    Local government processes require meaningful and effective participation from both citizens and their governments in order to remain truly democratic. This project investigates the use of mobile phones as a tool for supporting this participation. MobiSAM, a system which aims to enhance the Social Accountability Monitoring (SAM) methodology at local government level, has been designed and implemented. The research presented in this thesis examines tools and techniques for the development of cross-platform client applications, allowing access to the MobiSAM service, across heterogeneous mobile platforms, handsets and interaction styles. Particular attention is paid to providing an easily navigated user interface (UI), as well as offering clear and concise visualisation capabilities. Depending on the host device, interactivity is also included within these visualisations, potentially helping provide further insight into the visualised data. Guided by the results obtained from a comprehensive baseline study of the Grahamstown area, steps are taken in an attempt to lower the barrier of entry to using the MobiSAM service, potentially maximising its market reach. These include extending client application support to all identified mobile platforms (including feature phones); providing multi-language UIs (in English, isiXhosa and Afrikaans); as well as ensuring client application data usage is kept to a minimum. The particular strengths of a given device are also leveraged, such as its camera capabilities and built-in Global Positioning System (GPS) module, potentially allowing for more effective engagement with local municipalities. Additionally, a Short Message Service (SMS) gateway is developed, allowing all Global System for Mobile Communications (GSM) compatible handsets access to the MobiSAM service via traditional SMS. Following an iterative, user-centred design process, a thorough evaluation of the client application is also performed, in an attempt to gather feedback relating to the navigation and visualisation capabilities. The results of which are used to further refine its design. A comparative usability evaluation using two different versions of the cross-platform client application is also undertaken, highlighting the perceived memorability, learnabilitv and satisfaction of each. Results from the evaluation reveals which version of the client application is to be deployed during future pilot studies

    Genome visualisation and user studies in biologist-computer interaction

    Get PDF
    We surveyed a number of genome visualisation tools used in biomedical research. We recognised that none of the tools shows all the relevant data geneticists who look for candidate disease genes would like to see. The biological researchers we collaborate with would like to view integrated data from a variety of sources and be able to see both data overviews and details. In response to this need, we developed a new visualisation tool, VisGenome, which allows the users to add their own data or data downloaded from other sources, such as Ensembl. VisGenome visualises single and comparative representations of the rat, the mouse, and the human chromosomes, and can easily be used for other genomes. In the context of VisGenome development we made the following research contributions. We developed a new algorithm (CartoonPlus) which allows the users to see different kinds of data in cartoon scaling depending on a selected basis. Also, two user studies were conducted: an initial quantitative user study and a mixed paradigm user study. The first study showed that neither Ensembl nor VisGenome fulfil all user requirements and can be regarded as user-friendly, as the users make a significant number of mistakes during data navigation. To help users navigate their data easily, we improved existing visualisation techniques in VisGenome and added a new technique CartoonPlus. To verify if this solution was useful, we conducted a second user study. We saw that the users became more familiar with the tool, and found new ways to use the application on its own and in connection with other tools. They frequently used CartoonPlus, which allowed them to see small regions of their data in a way that was not possible before

    Information visualisation and data analysis using web mash-up systems

    Get PDF
    A thesis submitted in partial fulfilment for the degree of Doctor of PhilosophyThe arrival of E-commerce systems have contributed greatly to the economy and have played a vital role in collecting a huge amount of transactional data. It is becoming difficult day by day to analyse business and consumer behaviour with the production of such a colossal volume of data. Enterprise 2.0 has the ability to store and create an enormous amount of transactional data; the purpose for which data was collected could quite easily be disassociated as the essential information goes unnoticed in large and complex data sets. The information overflow is a major contributor to the dilemma. In the current environment, where hardware systems have the ability to store such large volumes of data and the software systems have the capability of substantial data production, data exploration problems are on the rise. The problem is not with the production or storage of data but with the effectiveness of the systems and techniques where essential information could be retrieved from complex data sets in a comprehensive and logical approach as the data questions are asked. Using the existing information retrieval systems and visualisation tools, the more specific questions are asked, the more definitive and unambiguous are the visualised results that could be attained, but when it comes to complex and large data sets there are no elementary or simple questions. Therefore a profound information visualisation model and system is required to analyse complex data sets through data analysis and information visualisation, to make it possible for the decision makers to identify the expected and discover the unexpected. In order to address complex data problems, a comprehensive and robust visualisation model and system is introduced. The visualisation model consists of four major layers, (i) acquisition and data analysis, (ii) data representation, (iii) user and computer interaction and (iv) results repositories. There are major contributions in all four layers but particularly in data acquisition and data representation. Multiple attribute and dimensional data visualisation techniques are identified in Enterprise 2.0 and Web 2.0 environment. Transactional tagging and linked data are unearthed which is a novel contribution in information visualisation. The visualisation model and system is first realised as a tangible software system, which is then validated through different and large types of data sets in three experiments. The first experiment is based on the large Royal Mail postcode data set. The second experiment is based on a large transactional data set in an enterprise environment while the same data set is processed in a non-enterprise environment. The system interaction facilitated through new mashup techniques enables users to interact more fluently with data and the representation layer. The results are exported into various reusable formats and retrieved for further comparison and analysis purposes. The information visualisation model introduced in this research is a compact process for any size and type of data set which is a major contribution in information visualisation and data analysis. Advanced data representation techniques are employed using various web mashup technologies. New visualisation techniques have emerged from the research such as transactional tagging visualisation and linked data visualisation. The information visualisation model and system is extremely useful in addressing complex data problems with strategies that are easy to interact with and integrate

    Visualisation of Linked Data – Reprise

    Get PDF
    Linked Data promises to serve as a disruptor of traditional approaches to data management and use, promoting the push from the traditional Web of documents to a Web of data. The ability for data consumers to adopt a follow your nose approach, traversing links defined within a dataset or across independently-curated datasets, is an essential feature of this new Web of Data, enabling richer knowledge retrieval thanks to synthesis across multiple sources of, and views on, inter-related datasets. But for the Web of Data to be successful, we must design novel ways of interacting with the corresponding very large amounts of complex, interlinked, multi-dimensional data throughout its management cycle. The design of user interfaces for Linked Data, and more specifically interfaces that represent the data visually, play a central role in this respect. Contributions to this special issue on Linked Data visualisation investigate different approaches to harnessing visualisation as a tool for exploratory discovery and basic-to-advanced analysis. The papers in this volume illustrate the design and construction of intuitive means for end-users to obtain new insight and gather more knowledge, as they follow links defined across datasets over the Web of Data

    Affective graphs: the visual appeal of linked data

    Get PDF
    The essence and value of Linked Data lies in the ability of humans and machines to query, access and reason upon highly structured and formalised data. Ontology structures provide an unambiguous description of the structure and content of data. While a multitude of software applications and visualization systems have been developed over the past years for Linked Data, there is still a significant gap that exists between applications that consume Linked Data and interfaces that have been designed with significant focus on aesthetics. Though the importance of aesthetics in affecting the usability, effectiveness and acceptability of user interfaces have long been recognised, little or no explicit attention has been paid to the aesthetics of Linked Data applications. In this paper, we introduce a formalised approach to developing aesthetically pleasing semantic web interfaces by following aesthetic principles and guidelines identified from literature. We apply such principles to design and develop a generic approach of using visualizations to support exploration of Linked Data, in an interface that is pleasing to users. This provides users with means to browse ontology structures, enriched with statistics of the underlying data, facilitating exploratory activities and enabling visual query for highly precise information needs. We evaluated our approach in three ways: an initial objective evaluation comparing our approach with other well-known interfaces for the semantic web and two user evaluations with semantic web researchers

    Visualisations with semantic icons: Assessing engagement with distracting elements

    Get PDF
    As visualisations reach a broad range of audiences, designing visualisations that attract and engage becomes more critical. Prior work suggests that semantic icons entice and immerse the reader; however, little is known about their impact with informational tasks and when the viewer’s attention is divided because of a distracting element. To address this gap, we first explored a variety of semantic icons with various visualisation attributes. The findings of this exploration shaped the design of our primary comparative online user studies, whereparticipants saw a target visualisation with a distracting visualisation on a web page and were asked to extract insights. Their engagement was measured through three dependent variables: (1) visual attention, (2) effort to write insights, and (3) self-reported engagement. In Study 1, we discovered that visualisations with semantic icons were consistently perceived to be more engaging than the plain version. However, we found no differences in visual attention and effort between the two versions. Thus, we ran Study 2 using visualisations with more salient semantic icons to achieve maximum contrast. The results were consistent with our first Study. Furthermore, we found that semantic icons elevated engagement with visualisations depicting less interestingand engaging topics from the participant’s perspective. We extended prior work by demonstrating the semantic value after performing an informational task (extracting insights) and reflecting on the visualisation, besides its value to the first impression. Our findings may be helpful to visualisation designers and storytellers keen on designing engaging visualisations with limited resources. We also contribute reflections on engagement measurements with visualisations and provide future directions
    corecore