1,084,876 research outputs found

    On the Control of Distributed Parameter Systems using a Multidimensional Systems Setting

    No full text
    The unique characteristic of a repetitive process is a series of sweeps, termed passes, through a set of dynamics defined over a finite duration with resetting before the start of the each new one. On each pass an output, termed the pass profile is produced which acts as a forcing function on, and hence contributes to, the dynamics of the next pass profile. This leads to the possibility that the output, i.e. the sequence of pass profiles, will contain oscillations which increase in amplitude in the pass-to-pass direction. Such behavior cannot be controlled by standard linear systems approach and instead they must be treated as a multidimensional system, i.e. information propagation in more than one independent direction. Physical examples of such processes include long-wall coal cutting and metal rolling. In this paper, stability analysis and control systems design algorithms are developed for a model where a plane, or rectangle, of information is propagated in the passto- pass direction. The possible use of these in the control of distributed parameter systems is then described using a fourthorder wavefront equation

    Optimal Control for Open Quantum Systems: Qubits and Quantum Gates

    Full text link
    This article provides a review of recent developments in the formulation and execution of optimal control strategies for the dynamics of quantum systems. A brief introduction to the concept of optimal control, the dynamics of of open quantum systems, and quantum information processing is followed by a presentation of recent developments regarding the two main tasks in this context: state-specific and state-independent optimal control. For the former, we present an extension of conventional theory (Pontryagin's principle) to quantum systems which undergo a non-Markovian time-evolution. Owing to its importance for the realization of quantum information processing, the main body of the review, however, is devoted to state-independent optimal control. Here, we address three different approaches: an approach which treats dissipative effects from the environment in lowest-order perturbation theory, a general method based on the time--evolution superoperator concept, as well as one based on the Kraus representation of the time-evolution superoperator. Applications which illustrate these new methods focus on single and double qubits (quantum gates) whereby the environment is modeled either within the Lindblad equation or a bath of bosons (spin-boson model). While these approaches are widely applicable, we shall focus our attention to solid-state based physical realizations, such as semiconductor- and superconductor-based systems. While an attempt is made to reference relevant and representative work throughout the community, the exposition will focus mainly on work which has emerged from our own group.Comment: 27 pages, 18 figure

    Implementing Quantum Gates by Optimal Control with Doubly Exponential Convergence

    Full text link
    We introduce a novel algorithm for the task of coherently controlling a quantum mechanical system to implement any chosen unitary dynamics. It performs faster than existing state of the art methods by one to three orders of magnitude (depending on which one we compare to), particularly for quantum information processing purposes. This substantially enhances the ability to both study the control capabilities of physical systems within their coherence times, and constrain solutions for control tasks to lie within experimentally feasible regions. Natural extensions of the algorithm are also discussed.Comment: 4+2 figures; to appear in PR

    Non-Markovian dynamics in open quantum systems

    Get PDF
    The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry and quantum information. In close analogy to a classical Markov process, the interaction of an open quantum system with a noisy environment is often modelled by a dynamical semigroup with a generator in Lindblad form, which describes a memoryless dynamics leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence and correlations. Here, recent results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of memory effects. The general theory is illustrated by a series of examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This article further explores the various physical sources of non-Markovian quantum dynamics, such as structured spectral densities, nonlocal correlations between environmental degrees of freedom and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments on the detection, quantification and control of non-Markovian quantum dynamics are also discussed.Comment: 26 pages, 10 figure

    Dynamical principles in neuroscience

    Full text link
    Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only a few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?This work was supported by NSF Grant No. NSF/EIA-0130708, and Grant No. PHY 0414174; NIH Grant No. 1 R01 NS50945 and Grant No. NS40110; MEC BFI2003-07276, and FundaciĂłn BBVA

    Information driven self-organization of complex robotic behaviors

    Get PDF
    Information theory is a powerful tool to express principles to drive autonomous systems because it is domain invariant and allows for an intuitive interpretation. This paper studies the use of the predictive information (PI), also called excess entropy or effective measure complexity, of the sensorimotor process as a driving force to generate behavior. We study nonlinear and nonstationary systems and introduce the time-local predicting information (TiPI) which allows us to derive exact results together with explicit update rules for the parameters of the controller in the dynamical systems framework. In this way the information principle, formulated at the level of behavior, is translated to the dynamics of the synapses. We underpin our results with a number of case studies with high-dimensional robotic systems. We show the spontaneous cooperativity in a complex physical system with decentralized control. Moreover, a jointly controlled humanoid robot develops a high behavioral variety depending on its physics and the environment it is dynamically embedded into. The behavior can be decomposed into a succession of low-dimensional modes that increasingly explore the behavior space. This is a promising way to avoid the curse of dimensionality which hinders learning systems to scale well.Comment: 29 pages, 12 figure
    • 

    corecore