1,242 research outputs found

    METRA: Scalable Unsupervised RL with Metric-Aware Abstraction

    Full text link
    Unsupervised pre-training strategies have proven to be highly effective in natural language processing and computer vision. Likewise, unsupervised reinforcement learning (RL) holds the promise of discovering a variety of potentially useful behaviors that can accelerate the learning of a wide array of downstream tasks. Previous unsupervised RL approaches have mainly focused on pure exploration and mutual information skill learning. However, despite the previous attempts, making unsupervised RL truly scalable still remains a major open challenge: pure exploration approaches might struggle in complex environments with large state spaces, where covering every possible transition is infeasible, and mutual information skill learning approaches might completely fail to explore the environment due to the lack of incentives. To make unsupervised RL scalable to complex, high-dimensional environments, we propose a novel unsupervised RL objective, which we call Metric-Aware Abstraction (METRA). Our main idea is, instead of directly covering the entire state space, to only cover a compact latent space ZZ that is metrically connected to the state space SS by temporal distances. By learning to move in every direction in the latent space, METRA obtains a tractable set of diverse behaviors that approximately cover the state space, being scalable to high-dimensional environments. Through our experiments in five locomotion and manipulation environments, we demonstrate that METRA can discover a variety of useful behaviors even in complex, pixel-based environments, being the first unsupervised RL method that discovers diverse locomotion behaviors in pixel-based Quadruped and Humanoid. Our code and videos are available at https://seohong.me/projects/metra

    Gesture Recognition in Robotic Surgery: a Review

    Get PDF
    OBJECTIVE: Surgical activity recognition is a fundamental step in computer-assisted interventions. This paper reviews the state-of-the-art in methods for automatic recognition of fine-grained gestures in robotic surgery focusing on recent data-driven approaches and outlines the open questions and future research directions. METHODS: An article search was performed on 5 bibliographic databases with combinations of the following search terms: robotic, robot-assisted, JIGSAWS, surgery, surgical, gesture, fine-grained, surgeme, action, trajectory, segmentation, recognition, parsing. Selected articles were classified based on the level of supervision required for training and divided into different groups representing major frameworks for time series analysis and data modelling. RESULTS: A total of 52 articles were reviewed. The research field is showing rapid expansion, with the majority of articles published in the last 4 years. Deep-learning-based temporal models with discriminative feature extraction and multi-modal data integration have demonstrated promising results on small surgical datasets. Currently, unsupervised methods perform significantly less well than the supervised approaches. CONCLUSION: The development of large and diverse open-source datasets of annotated demonstrations is essential for development and validation of robust solutions for surgical gesture recognition. While new strategies for discriminative feature extraction and knowledge transfer, or unsupervised and semi-supervised approaches, can mitigate the need for data and labels, they have not yet been demonstrated to achieve comparable performance. Important future research directions include detection and forecast of gesture-specific errors and anomalies. SIGNIFICANCE: This paper is a comprehensive and structured analysis of surgical gesture recognition methods aiming to summarize the status of this rapidly evolving field

    Learn Goal-Conditioned Policy with Intrinsic Motivation for Deep Reinforcement Learning

    Full text link
    It is of significance for an agent to learn a widely applicable and general-purpose policy that can achieve diverse goals including images and text descriptions. Considering such perceptually-specific goals, the frontier of deep reinforcement learning research is to learn a goal-conditioned policy without hand-crafted rewards. To learn this kind of policy, recent works usually take as the reward the non-parametric distance to a given goal in an explicit embedding space. From a different viewpoint, we propose a novel unsupervised learning approach named goal-conditioned policy with intrinsic motivation (GPIM), which jointly learns both an abstract-level policy and a goal-conditioned policy. The abstract-level policy is conditioned on a latent variable to optimize a discriminator and discovers diverse states that are further rendered into perceptually-specific goals for the goal-conditioned policy. The learned discriminator serves as an intrinsic reward function for the goal-conditioned policy to imitate the trajectory induced by the abstract-level policy. Experiments on various robotic tasks demonstrate the effectiveness and efficiency of our proposed GPIM method which substantially outperforms prior techniques.Comment: Accepted by AAAI-2

    Explore, discover and learn: unsupervised discovery of state-covering skills

    Get PDF
    Acquiring abilities in the absence of a task-oriented reward function is at the frontier of reinforcement learning research. This problem has been studied through the lens of empowerment, which draws a connection between option discovery and information theory. Information-theoretic skill discovery methods have garnered much interest from the community, but little research has been conducted in understanding their limitations. Through theoretical analysis and empirical evidence, we show that existing algorithms suffer from a common limitation -- they discover options that provide a poor coverage of the state space. In light of this, we propose 'Explore, Discover and Learn' (EDL), an alternative approach to information-theoretic skill discovery. Crucially, EDL optimizes the same information-theoretic objective derived from the empowerment literature, but addresses the optimization problem using different machinery. We perform an extensive evaluation of skill discovery methods on controlled environments and show that EDL offers significant advantages, such as overcoming the coverage problem, reducing the dependence of learned skills on the initial state, and allowing the user to define a prior over which behaviors should be learned.This work was partially supported by the Spanish Ministry of Science and Innovation and the European Regional Development Fund under contracts TEC2016-75976-R and TIN2015-65316-P, by the BSC-CNS Severo Ochoa program SEV-2015-0493, and by Generalitat de Catalunya under contracts 2017-SGR-1414 and 2017-DI-011. Víctor Campos was supported by Obra Social “la Caixa” through La Caixa-Severo Ochoa International Doctoral Fellowship program.Peer ReviewedPostprint (published version
    corecore