2,754 research outputs found

    Using Topological Statistics to Detect Determinism in Time Series

    Full text link
    Statistical differentiability of the measure along the reconstructed trajectory is a good candidate to quantify determinism in time series. The procedure is based upon a formula that explicitly shows the sensitivity of the measure to stochasticity. Numerical results for partially surrogated time series and series derived from several stochastic models, illustrate the usefulness of the method proposed here. The method is shown to work also for high--dimensional systems and experimental time seriesComment: 23 RevTeX pages, 14 eps figures. To appear in Physical Review

    A quasi-diagonal approach to the estimation of Lyapunov spectra for spatio-temporal systems from multivariate time series

    Full text link
    We describe methods of estimating the entire Lyapunov spectrum of a spatially extended system from multivariate time-series observations. Provided that the coupling in the system is short range, the Jacobian has a banded structure and can be estimated using spatially localised reconstructions in low embedding dimensions. This circumvents the ``curse of dimensionality'' that prevents the accurate reconstruction of high-dimensional dynamics from observed time series. The technique is illustrated using coupled map lattices as prototype models for spatio-temporal chaos and is found to work even when the coupling is not strictly local but only exponentially decaying.Comment: 13 pages, LaTeX (RevTeX), 13 Postscript figs, to be submitted to Phys.Rev.

    Recurrence-based time series analysis by means of complex network methods

    Full text link
    Complex networks are an important paradigm of modern complex systems sciences which allows quantitatively assessing the structural properties of systems composed of different interacting entities. During the last years, intensive efforts have been spent on applying network-based concepts also for the analysis of dynamically relevant higher-order statistical properties of time series. Notably, many corresponding approaches are closely related with the concept of recurrence in phase space. In this paper, we review recent methodological advances in time series analysis based on complex networks, with a special emphasis on methods founded on recurrence plots. The potentials and limitations of the individual methods are discussed and illustrated for paradigmatic examples of dynamical systems as well as for real-world time series. Complex network measures are shown to provide information about structural features of dynamical systems that are complementary to those characterized by other methods of time series analysis and, hence, substantially enrich the knowledge gathered from other existing (linear as well as nonlinear) approaches.Comment: To be published in International Journal of Bifurcation and Chaos (2011

    Exploring helical dynamos with machine learning

    Full text link
    We use ensemble machine learning algorithms to study the evolution of magnetic fields in magnetohydrodynamic (MHD) turbulence that is helically forced. We perform direct numerical simulations of helically forced turbulence using mean field formalism, with electromotive force (EMF) modeled both as a linear and non-linear function of the mean magnetic field and current density. The form of the EMF is determined using regularized linear regression and random forests. We also compare various analytical models to the data using Bayesian inference with Markov Chain Monte Carlo (MCMC) sampling. Our results demonstrate that linear regression is largely successful at predicting the EMF and the use of more sophisticated algorithms (random forests, MCMC) do not lead to significant improvement in the fits. We conclude that the data we are looking at is effectively low dimensional and essentially linear. Finally, to encourage further exploration by the community, we provide all of our simulation data and analysis scripts as open source IPython notebooks.Comment: accepted by A&A, 11 pages, 6 figures, 3 tables, data + IPython notebooks: https://github.com/fnauman/ML_alpha

    Bose-Einstein correlations for Levy stable source distributions

    Full text link
    The peak of the two-particle Bose-Einstein correlation functions has a very interesting structure. It is often believed to have a multivariate Gaussian form. We show here that for the class of stable distributions, characterized by the index of stability 0<α≀20 < \alpha \le 2, the peak has a stretched exponential shape. The Gaussian form corresponds then to the special case of α=2\alpha = 2. We give examples for the Bose-Einstein correlation functions for univariate as well as multivariate stable distributions, and check the model against two-particle correlation data.Comment: 30 pages, 1 figure, an important misprint in former eqs. (37-38) and other minor misprints are corrected, citations update

    Exploiting Nonlinear Recurrence and Fractal Scaling Properties for Voice Disorder Detection

    Get PDF
    Background: Voice disorders affect patients profoundly, and acoustic tools can potentially measure voice function objectively. Disordered sustained vowels exhibit wide-ranging phenomena, from nearly periodic to highly complex, aperiodic vibrations, and increased &#x22;breathiness&#x22;. Modelling and surrogate data studies have shown significant nonlinear and non-Gaussian random properties in these sounds. Nonetheless, existing tools are limited to analysing voices displaying near periodicity, and do not account for this inherent biophysical nonlinearity and non-Gaussian randomness, often using linear signal processing methods insensitive to these properties. They do not directly measure the two main biophysical symptoms of disorder: complex nonlinear aperiodicity, and turbulent, aeroacoustic, non-Gaussian randomness. Often these tools cannot be applied to more severe disordered voices, limiting their clinical usefulness.&#xd;&#xa;&#xd;&#xa;Methods: This paper introduces two new tools to speech analysis: recurrence and fractal scaling, which overcome the range limitations of existing tools by addressing directly these two symptoms of disorder, together reproducing a &#x22;hoarseness&#x22; diagram. A simple bootstrapped classifier then uses these two features to distinguish normal from disordered voices.&#xd;&#xa;&#xd;&#xa;Results: On a large database of subjects with a wide variety of voice disorders, these new techniques can distinguish normal from disordered cases, using quadratic discriminant analysis, to overall correct classification performance of 91.8% plus or minus 2.0%. The true positive classification performance is 95.4% plus or minus 3.2%, and the true negative performance is 91.5% plus or minus 2.3% (95% confidence). This is shown to outperform all combinations of the most popular classical tools.&#xd;&#xa;&#xd;&#xa;Conclusions: Given the very large number of arbitrary parameters and computational complexity of existing techniques, these new techniques are far simpler and yet achieve clinically useful classification performance using only a basic classification technique. They do so by exploiting the inherent nonlinearity and turbulent randomness in disordered voice signals. They are widely applicable to the whole range of disordered voice phenomena by design. These new measures could therefore be used for a variety of practical clinical purposes.&#xd;&#xa

    Top Quark Physics at the Tevatron

    Full text link
    We review the field of top-quark physics with an emphasis on experimental techniques. The role of the top quark in the Standard Model of particle physics is summarized and the basic phenomenology of top-quark production and decay is introduced. We discuss how contributions from physics beyond the Standard Model could affect top-quark properties or event samples. The many measurements made at the Fermilab Tevatron, which test the Standard Model predictions or probe for direct evidence of new physics using the top-quark event samples, are reviewed here.Comment: 50 pages, 17 figures, 2 tables; version accepted by Review of Modern Physic
    • 

    corecore