68,313 research outputs found

    A coupled approximate deconvolution and dynamic mixed scale model for large-eddy simulation

    Full text link
    Large-eddy simulations of incompressible Newtonian fluid flows with approximate deconvolution models based on the van Cittert method are reported. The Legendre spectral element method is used for the spatial discretization to solve the filtered Navier--Stokes equations. A novel variant of approximate deconvolution models blended with a mixed scale model using a dynamic evaluation of the subgrid-viscosity constant is proposed. This model is validated by comparing the large-eddy simulation with the direct numerical simulation of the flow in a lid-driven cubical cavity, performed at a Reynolds number of 12'000. Subgrid modeling in the case of a flow with coexisting laminar, transitional and turbulent zones such as the lid-driven cubical cavity flow represents a challenging problem. Moreover, the coupling with the spectral element method having very low numerical dissipation and dispersion builds a well suited framework to analyze the efficiency of a subgrid model. First- and second-order statistics obtained using this new model are showing very good agreement with the direct numerical simulation. Filtering operations rely on an invertible filter applied in a modal basis and preserving the C0-continuity across elements. No clipping on dynamic parameters was needed to preserve numerical stability

    Modeling of the subgrid-scale term of the filtered magnetic field transport equation

    Full text link
    Accurate subgrid-scale turbulence models are needed to perform realistic numerical magnetohydrodynamic (MHD) simulations of the subsurface flows of the Sun. To perform large-eddy simulations (LES) of turbulent MHD flows, three unknown terms have to be modeled. As a first step, this work proposes to use a priori tests to measure the accuracy of various models proposed to predict the SGS term appearing in the transport equation of the filtered magnetic field. It is proposed to evaluate the SGS model accuracy in term of "structural" and "functional" performance, i.e. the model capacity to locally approximate the unknown term and to reproduce its energetic action, respectively. From our tests, it appears that a mixed model based on the scale-similarity model has better performance.Comment: 10 pages, 5 figures; Center for Turbulence Research, Proceedings of the Summer Program 2010, Stanford Universit

    Multilinear tensor regression for longitudinal relational data

    Full text link
    A fundamental aspect of relational data, such as from a social network, is the possibility of dependence among the relations. In particular, the relations between members of one pair of nodes may have an effect on the relations between members of another pair. This article develops a type of regression model to estimate such effects in the context of longitudinal and multivariate relational data, or other data that can be represented in the form of a tensor. The model is based on a general multilinear tensor regression model, a special case of which is a tensor autoregression model in which the tensor of relations at one time point are parsimoniously regressed on relations from previous time points. This is done via a separable, or Kronecker-structured, regression parameter along with a separable covariance model. In the context of an analysis of longitudinal multivariate relational data, it is shown how the multilinear tensor regression model can represent patterns that often appear in relational and network data, such as reciprocity and transitivity.Comment: Published at http://dx.doi.org/10.1214/15-AOAS839 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Regularization modeling for large-eddy simulation of diffusion flames

    Get PDF
    We analyze the evolution of a diffusion flame in a turbulent mixing layer using large-eddy simulation. The large-eddy simulation includes Leray regularization of the convective transport and approximate inverse filtering to represent the chemical source terms. The Leray model is compared to the more conventional dynamic mixed model. The location of the flame-center is defined by the 'stoichiometric' interface. Geometrical properties such as its surface-area and wrinkling are characterized using an accurate numerical level-set quadrature method. This allows to quantify flame-properties as well as turbulence modulation effects due to coupling between combustion and turbulent transport. We determine the active flame-region that is responsible for the main part of the chemical conversion in the flame and compare direct and large-eddy simulation predictions
    corecore